scholarly journals INFLUENCE OF EMERGENT VEGETATION ON SEDIMENT YIELD AT CROSS-SHORE COASTAL ENVIRONMENTS

Author(s):  
Umut Turker ◽  
Oral Yagci ◽  
Amin Riazi ◽  
Sedat Kabdasli

This study aimed to conceptually analyze the change in the magnitude of offshore sediment yield, wave energy, and offshore dislocation of sediment particles on coastal regions in the presence of coastal vegetation. This was achieved by comparing the simultaneous physical changes at coastal zones that were partly covered with vegetation while the remaining part had no vegetation. Series of experiments were conducted, and the interactions between the vegetation parameter, ratio of sediment yields, and offshore sediment dislocation distances were analyzed and determined to define the relationship between the parameters. The resultant empirical equations mostly followed a power relationship and fit the experimental data. The energy decay coefficient, reflecting the energy used in the presence of the vegetation, had strong protection ability and approached 80% energy decay as the vegetation parameter increased. The performance of natural vegetation cover was adequate, simulating a 50–80% decrease in offshore sediment yield, depending on the magnitude of the vegetation parameter.

Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 650
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Excessive soil loss and sediment yield in the highlands of Ethiopia are the primary factors that accelerate the decline of land productivity, water resources, operation and function of existing water infrastructure, as well as soil and water management practices. This study was conducted at Finchaa catchment in the Upper Blue Nile basin of Ethiopia to estimate the rate of soil erosion and sediment loss and prioritize the most sensitive sub-watersheds using the Soil and Water Assessment Tool (SWAT) model. The SWAT model was calibrated and validated using the observed streamflow and sediment data. The average annual sediment yield (SY) in Finchaa catchment for the period 1990–2015 was 36.47 ton ha−1 yr−1 with the annual yield varying from negligible to about 107.2 ton ha−1 yr−1. Five sub-basins which account for about 24.83% of the area were predicted to suffer severely from soil erosion risks, with SY in excess of 50 ton ha−1 yr−1. Only 15.05% of the area within the tolerable rate of loss (below 11 ton ha−1yr−1) was considered as the least prioritized areas for maintenance of crop production. Despite the reasonable reduction of sediment yields by the management scenarios, the reduction by contour farming, slope terracing, zero free grazing and reforestation were still above the tolerable soil loss. Vegetative contour strips and soil bund were significant in reducing SY below the tolerable soil loss, which is equivalent to 63.9% and 64.8% reduction, respectively. In general, effective and sustainable soil erosion management requires not only prioritizations of the erosion hotspots but also prioritizations of the most effective management practices. We believe that the results provided new and updated insights that enable a proactive approach to preserve the soil and reduce land degradation risks that could allow resource regeneration.


1998 ◽  
Vol 78 (4) ◽  
pp. 699-706 ◽  
Author(s):  
S. I. Gill ◽  
M. A. Naeth ◽  
D. S. Chanasyk ◽  
V. S. Baron

Currently, there is interest in Western Canada in extending the grazing season using perennial and annual forages. Of greatest concern is the environmental sustainability of these grazing systems, with emphasis on their ability to withstand erosion. A study to examine the runoff and sediment yields of annual and perennial forages in central Alberta was initiated in 1994. Runoff and sediment yield were quantified under snowmelt and rainfall events for two seasons. Rainfall simulation was used to further examine runoff under growing season conditions. Four forage treatments (two annuals: triticale and a barley/triticale mixture and two perennials: smooth bromegrass and meadow bromegrass) and three grazing intensities (light, medium and heavy) were studied, each replicated four times. Total annual runoff was dominated by snowmelt. Generally runoff volumes, sediment yields, sediment ratios and runoff coefficients were all low. Bare ground increased with increasing grazing intensity and was significantly greater in annuals than perennials for all grazing intensities. Litter biomass decreased with increasing grazing intensity and was generally similar in all species for both years at heavy and medium grazing intensities. Results from the rainfall simulation corroborated those under natural rainfall conditions and generally indicated the sustainability of these grazing systems at this site. Key words: Forages, soil erosion, sustainability, rainfall simulation


2013 ◽  
Vol 1 (1) ◽  
pp. 13-27 ◽  
Author(s):  
T. J. Coulthard ◽  
M. J. Van de Wiel

Abstract. Sediment yields from river basins are typically considered to be controlled by tectonic and climatic drivers. However, climate and tectonics can operate simultaneously and the impact of autogenic processes scrambling or shredding these inputs can make it hard to unpick the role of these drivers from the sedimentary record. Thus an understanding of the relative dominance of climate, tectonics or other processes in the output of sediment from a basin is vital. Here, we use a numerical landscape evolution model (CAESAR) to specifically examine the relative impact of climate change, tectonic uplift (instantaneous and gradual) and basin morphology on sediment yield. Unexpectedly, this shows how the sediment signal from significant rates of uplift (10 m instant or 25 mm a−1) may be lost due to internal storage effects within even a small basin. However, the signal from modest increases in rainfall magnitude (10–20%) can be seen in increases in sediment yield. In addition, in larger basins, tectonic inputs can be significantly diluted by regular delivery from non-uplifted parts of the basin.


Author(s):  
Yi Wang ◽  
Jiupai Ni ◽  
Chengsheng Ni ◽  
Sheng Wang ◽  
Deti Xie

Abstract Due to the difficulty in monitoring subsurface runoff and sediment migration, their loss loads are still not clear and need further study. This study monitored water and soil loss occurring within experimental field plots for two calendar years under natural rainfall events. The sediment loss load was quantified by considering the corresponding water flow flux and its sediment concentration. The results showed that 60.04% of the runoff and 2.83% of the sediment were lost underground. The annual underground sediment loss reached up to 54.6 kg*ha−1*yr−1. A total of 69.68% of the runoff yield and 67.25% of the sediment yield were produced during the corn planting stage (CPS: March–July). Heavy rain and torrential rain events produced 94.45%, 65.46% of the annual runoff and 94.45%, 76.21% of the sediment yields during the corn-planting stage and summer fallow period (SFP: August–September). The rain frequency, rainfall, and rainfall duration of each planting stage significantly affected the resulting runoff and sediment yield. Measures aimed at the prevention and control of water-soil loss from purple soil sloping land should heavily focus on torrential rain and heavy rain events during the CPS and SFP. This paper aims to provide a practical reference for quantifying the water and soil loss from purple soil sloping cropland.


Author(s):  
Thomas J van Veelen ◽  
Harshinie Karunarathna ◽  
William G Bennett ◽  
Tom P Fairchild ◽  
Dominic E Reeve

The ability of coastal vegetation to attenuate waves has been well established (Moller et al., 2014). Salt marshes are vegetated coastal wetlands that can act as nature- based coastal defenses. They exhibit a range of plant species, which have been shown to differ in the amount of wave damping they provide (Mullarney & Henderson, 2018). Recent studies have shown that plant flexibility is a key parameter that controls wave energy dissipation (Paul et al., 2016). Yet, no model exists that includes plant flexibility in computationally efficient manner for large-scale coastal zones. Therefore, we have developed a new model for flexible vegetation based on the key mechanisms in the wave-vegetation interaction and applied it to an estuary with diverse salt marsh vegetation.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/AjnFx3aFSzs


2012 ◽  
Vol 9 (3) ◽  
pp. 3339-3384
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou Basin located in Northern Laos. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Future precipitation and temperature series are constructed through a delta change approach. As per the results, in general, temperature as well as precipitation show increasing trends in both scenarios, A2 and B2. However, monthly precipitation shows both increasing and decreasing trends. The simulation results exhibit that the wet and dry seasonal and annual stream discharges are likely to increase (by up to 15, 17 and 14% under scenario A2; and 11, 5 and 10% under scenario B2 respectively) in the future, which will lead to increased wet and dry seasonal and annual sediment yields (by up to 39, 28 and 36% under scenario A2; and 23, 12 and 22% under scenario B2 respectively). A higher discharge and more sediment flux are expected during the wet seasons, although the changes, percentage-wise, are observed to be higher during the dry months. In conclusion, the sediment yield from the Nam Ou Basin is likely to increase with climate change, which strongly suggests the need for basin-wide sediment management strategies in order to reduce the negative impact of this change.


2021 ◽  
Author(s):  
Rachel Armoza-Zvuloni ◽  
Yanai Shlomi ◽  
Itay Abadi ◽  
Rachamim Shem-Tov ◽  
Jonathan B. Laronne

<p>Floods rarely occur in hyper-arid deserts and little is known about the magnitude and frequency of sediment delivery from their basins, despite their importance to changes to the landscape as well as to infrastructures and engineering activities. Sediment yield from the Nahal Nehushtan watershed (15.7 km<sup>2</sup>) located in the Timna Valley in southern Israel, was determined by assessing stratigraphic sections in its 60-year reservoir deposits. Stratigraphic correlation between event couplets allowed quantification of sediment yields representing 13 former flash-flood events. Based on the sediment volume in the reservoir, the 24.6 t km<sup>-2</sup> y<sup>-1</sup> average sediment yield is the lowest among other studied warm deserts. Among the event layers, five are voluminously small and seven are medium-sized. The thickest layer, deposited by a flash flood caused by a single short rain event, contributed 29% of the total sediment yield. This demonstrates the overarching effect of medium magnitude events on the rate of sediment production in a hyper-arid setting. Based on event reservoir sedimentation from watersheds located in several hyper-arid areas in the Middle East and North America, sediment load increases with drainage area as expected; however, sediment yield does not decrease with drainage area, as was shown for arid environments. Overall, mean annual sediment yield is very low and increases with flood frequency, with considerable variation generated by local characteristics. Our quantitative results together with previous studies of hyper-arid areas, provide complementary evidence of fluvial sediment transport - the main landscape designer in fluvial desert landscapes.</p>


Author(s):  
Avijit Gupta

Periodic attempts to plot global distribution of erosion and sedimentation usually attribute most of Southeast Asia with a very high sediment yield (Milliman and Meade 1983). The erosion rates and sediment yield figures are especially high for maritime Southeast Asia. Milliman and Syvitski (1992), for example, listed 3000 t km−2 yr−1 for the archipelagos and peninsulas of Southeast Asia. They provided a number of natural explanations for the high erosion rate: location near active plate margins, pyroclastic eruptions, steep slopes, and mass movements. This is also a region with considerable annual rainfall, a very substantial percentage of which tends to be concentrated in a few months and falls with high intensity. Part of Southeast Asia (the Philippines, Viet Nam, Timor) is visited by tropical cyclones with heavy, intense rainfall and possible associated wind damage to existing vegetation. The fans at the foot of slopes, the large volume of sediment stored in the channel and floodplain of the rivers, and the size of deltas all indicate a high rate of erosion and episodic sediment transfer. This episodic erosion and sediment transfer used to be controlled for most of the region by the thick cover of vegetation that once masked the slopes. When vegetation is removed soil and regolith de-structured, and natural slopes altered, the erosion rates and sediment yield reach high figures. Parts of Southeast Asia display striking anthropogenic alteration of the landscape, although the resulting accelerated erosion may be only temporary, operating on a scale of several years. Over time the affected zones shift, and slugs of sediment continue to arrive in a river but from different parts of its drainage basin. The combination of anthropogenic alteration and fragile landforms may give rise to very high local yields. Sediment yields of more than 15 000 t km−2 yr−1 have been estimated from such areas (Ruslan and Menam, cited in Lal 1987). This is undoubtedly towards the upper extreme, but current destruction of the vegetation cover due to deforestation, expansion of agriculture, mining, urbanization, and implementation of large-scale resettlement schemes has increased the sediment yield from < 102 to > 103 t km−2 yr−1.


2013 ◽  
Vol 1 (No. 1) ◽  
pp. 23-31 ◽  
Author(s):  
Bečvář Martin

Sediment is a natural component of riverine environments and its presence in river systems is essential. However, in many ways and many places river systems and the landscape have been strongly affected by human activities which have destroyed naturally balanced sediment supply and sediment transport within catchments. As a consequence a number of severe environmental problems and failures have been identified, in particular the link between sediments and chemicals is crucial and has become a subject of major scientific interest. Sediment load and sediment concentration are therefore highly important variables that may play a key role in environment quality assessment and help to evaluate the extent of potential adverse impacts. This paper introduces a methodology to predict sediment loads and suspended sediment concentrations (SSC) in large European river basins. The methodology was developed within an MSc research study that was conducted in order to improve sediment modelling in the GREAT-ER point source pollution river modelling package. Currently GREAT-ER uses suspended sediment concentration of 15 mg/l for all rivers in Europe which is an obvious oversimplification. The basic principle of the methodology to predict sediment concentration is to estimate annual sediment load at the point of interest and the amount of water that transports it. The amount of transported material is then redistributed in that corresponding water volume (using the flow characteristic) which determines sediment concentrations. Across the continent, 44 river basins belonging to major European rivers were investigated. Suspended sediment concentration data were collected from various European basins in order to obtain observed sediment yields. These were then compared against the traditional empiric sediment yield estimators. Three good approaches for sediment yield prediction were introduced based on the comparison. The three approaches were applied to predict annual sediment yields which were consequently translated into suspended sediment concentrations. SSC were predicted at 47 locations widely distributed around Europe. The verification of the methodology was carried out using data from the Czech Republic. Observed SSC were compared against the predicted ones which validated the methodology for SSC prediction.


2005 ◽  
Vol 5 (2) ◽  
pp. 189-202 ◽  
Author(s):  
J. C. Bathurst ◽  
G. Moretti ◽  
A. El-Hames ◽  
A. Moaven-Hashemi ◽  
A. Burton

Abstract. The SHETRAN model for determining the sediment yield arising from shallow landsliding at the scale of a river catchment was applied to the 180-km2 Valsassina basin in the Italian Southern Alps, with the aim of demonstrating that the model can simulate long term patterns of landsliding and the associated sediment yields and that it can be used to explore the sensitivity of the landslide sediment supply system to changes in catchment characteristics. The model was found to reproduce the observed spatial distribution of landslides from a 50-year record very well but probably with an overestimate of the annual rate of landsliding. Simulated sediment yields were within the range observed in a wider region of northern Italy. However, the results suggest that the supply of shallow landslide material to the channel network contributes relatively little to the overall long term sediment yield compared with other sources. The model was applied for scenarios of possible future climate (drier and warmer) and land use (fully forested hillslopes). For both scenarios, there is a modest reduction in shallow landslide occurrence and the overall sediment yield. This suggests that any current schemes for mitigating sediment yield impact in Valsassina remain valid. The application highlights the need for further research in eliminating the large number of unconditionally unsafe landslide sites typically predicted by the model and in avoiding large overestimates of landslide occurrence.


Sign in / Sign up

Export Citation Format

Share Document