scholarly journals A Facile Approach for the Synthesis of Zinc Ferrite/Alkali Cellulose as an Effective Magnetic Photocatalyst for the Degradation of Methylene Blue in Aqueous Solution

Author(s):  
Khaled Charradi ◽  
Zakarya Ahmed ◽  
Mohamed Moussa ◽  
Zyed Beji ◽  
Ameni Brahmia ◽  
...  

Abstract The spinel zinc ferrite/alkali cellulose composite has been successfully fabricated as a magnetic photocatalyst and assessed for its photocatalytic activity toward the degradation of methylene blue (MB) in an aqueous solution. The Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), thermogravimetric analysis (TGA), BET, and zeta potential were used to evaluate the magnetic photocatalyst composite and investigate its adsorption mechanism. Furthermore, the adsorption behavior of the composite was studied under various conditions. The ZnFe2O4/alkali cellulose composite effectively degraded (100%) MB after 180 min at a pH of 6.5 compared to cellulose, alkali cellulose and ZnFe2O4. The regeneration of the loaded composite was studied using the alcohol/water solution and reused upon a certain variation in the efficiency after the fourth cycle. The adsorption process was found to be consistent with the pseudo-second-order kinetic model.

2020 ◽  
Vol 15 (2) ◽  
pp. 476-489
Author(s):  
Iis Intan Widiyowati ◽  
Mukhamad Nurhadi ◽  
Muhammad Hatami ◽  
Lai Sin Yuan

The study of TiO2-sulfonated carbon-derived from Eichhornia crassipes (TiO2/SCEC), as an effective adsorbent to remove Methylene blue (MB) and Congo red (CR) dyes from aqueous solution, has been conducted. The preparation steps of TiO2/SCEC adsorbent involved the carbonisation of E. crassipes powder at 600 °C for 1 h, followed by sulfonation of carbon for 3 h and impregnation through titanium(IV) isopropoxide (500 µmol). The physical properties of the adsorbents were characterized by using X-ray fluorescence (XRF), Fourier transform infrared, X-ray diffraction (XRD), Scanning electron microscopy with Energy dispersive X-ray (SEM-EDX), Thermogravimetric analysis (TGA) and nitrogen adsorption-desorption studies. The dye removal study using TiO2/SCEC adsorbent was carried out by varying of contact time, adsorbent dosage, initial dye concentration, pH, particles size of adsorbent and temperature. The kinetics models were determined by the effects of contact time and the thermodynamic parameters (ΔH, ΔS, and ΔG), which were calculated by the effects of temperature. The results showed that the maximum dye removal capacity of TiO2/SCEC were 18.8 mg.g-1 for MB and 36.5 mg.g-1 for CR. The removal of MB and CR dyes using TiO2/SCEC adsorbent performed a pseudo-second order kinetic models with spontaneity. Copyright © 2020 BCREC Group. All rights reserved 


Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2020 ◽  
Vol 9 (3) ◽  
pp. 9-14
Author(s):  
Hao Pham Van ◽  
Linh Ha Xuan ◽  
Oanh Phung Thi ◽  
Hong Phan Ngoc ◽  
Huy Nguyen Nhat ◽  
...  

This report presents the effect of synthesis conditions on the synthesis of graphene nanosheets via electrochemical exfoliation method for adsorbing methylene blue from aqueous solution. Oxygen-containing functional groups and defects in the material were characterized by Raman and X-ray photoelectron spectroscopy (XPS). As a result, by using voltage of 15 V, (NH4)2SO4 (5%, 250 mL) and KOH (7.5%, 250 mL), the obtained material showed the highest MB adsorption capacity due to the high densities of oxygen-containing groups and defects comparison to other conditions.


2014 ◽  
Vol 14 (4) ◽  
pp. 554-560 ◽  
Author(s):  
S. P. Suriyaraj ◽  
M. Benasir Begam ◽  
S. G. Deepika ◽  
P. Biji ◽  
R. Selvakumar

The present study investigates the development of titanium dioxide (TiO2)/polyacrylonitrile (PAN) nanofiber membrane for the removal of nitrate from aqueous solution by photocatalysis. The TiO2 nanoparticles were synthesized by conventional sol–gel method followed by blending them into PAN polymer. The blended solution was electrospun into nanofiber using the co-electrospinning technique. The nanoparticle, PAN nanofibers and the TiO2 impregnated nanofibers were characterized using suitable techniques like X-ray diffraction, high-resolution transmission electron microscopy and scanning electron microscopy attached with energy dispersive X-ray spectroscopy. The average size and the diameter of the TiO2 nanoparticles and TiO2/PAN nanofibers were found to be 22 ± 0.32 nm and 90 ± 15 nm respectively. TiO2 nanoparticles and TiO2/PAN nanofibers showed maximum nitrate removal of 74.67 and 39% respectively at 10 mg/L nitrate concentration at pH 4. However at higher concentration (50 mg/L), the nitrate removal was found to be only 16.87%. The experimental data were fitted onto pseudo second-order kinetic model. The impregnation of TiO2 nanoparticles into the PAN nanofibers by co-electrospinning techniques lead to higher removal of nitrate in aqueous solution at lower concentration (10 mg/L and below). However at higher concentration, the TiO2/PAN nanofiber membrane was inefficient to remove nitrate.


2016 ◽  
Vol 864 ◽  
pp. 117-122 ◽  
Author(s):  
Hesni Shabrany ◽  
Hendry Tju ◽  
Ardiansyah Taufik ◽  
Rosari Saleh

This paper discusses the catalytic activity of ZnO/CuO/nanographene platelets composites under visible light and ultrasound irradiation separately. The ZnO/CuO/nanographene platelets composites were synthesized using a sol-gel method. X-ray diffraction and nitrogen adsorption spectroscopy were employed to investigate the structural and surface area of the catalyst. The catalytic activity results showed that the presence of nanographene platelets in ZnO/CuO nanocomposites improved its efficiency in degrading methylene blue. A scavenger method was also used to understand the role of charged carriers and the active radical involved in the catalytic activity.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
America R. Vazquez-Olmos ◽  
Mohamed Abatal ◽  
Roberto Y. Sato-Berru ◽  
G. K. Pedraza-Basulto ◽  
Valentin Garcia-Vazquez ◽  
...  

Adsorption of Pb(II) from aqueous solution using MFe2O4 nanoferrites (M = Co, Ni, and Zn) was studied. Nanoferrite samples were prepared via the mechanochemical method and were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), micro-Raman, and vibrating sample magnetometry (VSM). XRD analysis confirms the formation of pure single phases of cubic ferrites with average crystallite sizes of 23.8, 19.4, and 19.2 nm for CoFe2O4, NiFe2O4, and ZnFe2O4, respectively. Only NiFe2O4 and ZnFe2O4 samples show superparamagnetic behavior at room temperature, whereas CoFe2O4 is ferromagnetic. Kinetics and isotherm adsorption studies for adsorption of Pb(II) were carried out. A pseudo-second-order kinetic describes the sorption behavior. The experimental data of the isotherms were well fitted to the Langmuir isotherm model. The maximum adsorption capacity of Pb(II) on the nanoferrites was found to be 20.58, 17.76, and 9.34 mg·g−1 for M = Co, Ni, and Zn, respectively.


2016 ◽  
Vol 73 (11) ◽  
pp. 2832-2840 ◽  
Author(s):  
Daryush Naghipour ◽  
Kamran Taghavi ◽  
Mehrdad Moslemzadeh

In this study, adsorption of methylene blue (MB) dye onto Artist's Bracket (AB) fungi was investigated in aqueous solution. Fourier transform infrared and scanning electron microscopy were used to investigate surface characteristic of AB fungi. Influence of operational parameters such as pH, contact time, biosorbent dosage, dye concentration, inorganic salts and temperature was studied on dye removal efficiency. With the increase of pH from 3 to 9, removal efficiency increased from 74.0% to 90.4%. Also, it reduced from 99.8% to 81.8% with increasing initial MB concentration from 25 mg L−1 to 100 mg L−1, whereas it increased from 54.7% to 98.7% and from 98.5% to 99.9% with increasing biosorbent dosage from 0.5 g L−1 to 2 g L−1 and with increasing temperature from 25 °C to 50 °C, respectively. Isotherm studies have shown adsorption of MB dye over the AB fungi had a better coefficient of determination (R2) of 0.98 for Langmuir isotherm. In addition, the maximum monolayer adsorption capacity (qm) was 100 mg g−1. Also, the MB dye adsorption process followed pseudo-second-order kinetic. In general, AB fungi particles can be favorable for removal of MB dye from dye aqueous solution with natural pH and high temperature.


2010 ◽  
Vol 25 (1) ◽  
pp. 134-140 ◽  
Author(s):  
Yen-Pei Fu ◽  
Wen-Ku Chang ◽  
Hsin-Chao Wang ◽  
Chung-Wen Liu ◽  
Cheng-Hsiung Lin

In the current research, we successfully prepared TiO2/Ni–Cu–Zn ferrite composite powder for magnetic photocatalyst. The core Ni–Cu–Zn ferrite powder was synthesized using the steel pickling liquor and the waste solution of electroplating as the starting materials. The shell TiO2 nanocrystal was prepared by sol-gel hydrolysis precipitation of titanium isopropoxide [Ti(OC3H7)4] on the Ni–Cu–Zn ferrite powder followed by heat treatment. From transmission electron microscopy (TEM) image, the thickness of the titania shell was found to be approximately 5 nm. The core of Ni–Cu–Zn ferrite is spherical or elliptical shape, and the particle size of the core is in the range of 70–110 nm. The magnetic Ni–Cu–Zn ferrite nanopowder is uniformly encapsulated in a titania layer forming core-shell structure of TiO2/Ni–Cu–Zn ferrite powder. The degradation efficiency for methylene blue (MB) increases with magnetic photocatalyst (TiO2/Ni–Cu–Zn ferrite powder) content. When the magnetic photocatalyst content is 0.40 g in 150 mL of MB, the photocatalytic activity reached the largest value. With a further increase in the content of magnetic photocatalyst, the degradation efficiency slightly decreased. This occurs because the ultraviolet (UV) illumination is covered by catalysts, which were suspended in the methylene blue solution and resulted in the inhibition in the photocatalytic reaction. The photocatalytic degradation result for the relationship between MB concentration and illumination revealed a pseudo first-order kinetic model of the degradation with the limiting rate constant of 1.717 mg/L·min and equilibrium adsorption constant 0.0627 L/mg. Furthermore, the Langmuir–Hinshelwood model can be used to describe the degradation reaction, which suggests that the rate-determining step is surface reaction rather than adsorption is in photocatalytic degradation.


2018 ◽  
Vol 9 (3) ◽  
pp. 202-212 ◽  
Author(s):  
Mohammad Nasir Uddin ◽  
Jahangir Alam ◽  
Syeda Rahimon Naher

The adsorption capacity of chromium(III) from synthetic waste water solution by a low cost biomaterial, Jute Stick Powder (JSP)was examined. A series of batch experiments were conducted at different pH values, adsorbent dosage and initial chromium concentration to investigate the effects of these experimental conditions. To analyze the metal adsorption on to the JSP, most common adsorption isotherm models were applied. To study the reaction rate, the kinetic and diffusion models were also applied. The morphological structure and variation of functional groups in the JSP before and after adsorption was examined by scanning electron microscope (SEM) and Fourier transform infrared spectrometry (FT-IR). Maximum chromium removal capacities of JSP was 84.34%with corresponding equilibrium uptake 8.4 mg/g from 50 mg/L of synthetic metal solution in 60 minutes of contact time at pH = 6.0 and 28 °C with continuous stirring at 180 rpm. The percent sorption of the biomass decreased with increasing concentration of metal ion but increased with decreasing pH, increasing contact time and adsorbent doses. Data for this study indicated a good correspondence with both isotherms of Langmuir and Freundlich isotherm. The analysis of kinetic indicated that Chromium was consistent with the second-order kinetic adsorption model. The rate of removal of Cr(III) ions from aqueous solution by JSP was found rapid initially within 5-30 minutes and reached in equilibrium in about 40 minutes. The investigation revealed that JSP, a low cost agricultural byproduct, was a potential adsorbent for removal of heavy metal ions from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document