scholarly journals The Effects of Seasonal Variation on the Microbial-N Flow to the Small Intestine and Prediction of Feed Intake in Grazing Karayaka Sheep

Author(s):  
Mustafa SALMAN ◽  
Nurcan CETINKAYA ◽  
Zehra SELCUK ◽  
Bugra GENC
1997 ◽  
Vol 128 (2) ◽  
pp. 233-246 ◽  
Author(s):  
S. A. NEUTZE ◽  
J. M. GOODEN ◽  
V. H. ODDY

This study used an experimental model, described in a companion paper, to examine the effects of feed intake on protein turnover in the small intestine of lambs. Ten male castrate lambs (∼ 10 months old) were offered, via continuous feeders, either 400 (n = 5) or 1200 (n = 5) g/day lucerne chaff, and mean experimental liveweights were 28 and 33 kg respectively. All lambs were prepared with catheters in the cranial mesenteric vein (CMV), femoral artery (FA), jugular vein and abomasum, and a blood flow probe around the CMV. Cr-EDTA (0·139 mg Cr/ml, ∼ 0·2 ml/min) was infused abomasally for 24 h and L-[2,6-3H]phenylalanine (Phe) (420±9·35 μCi into the abomasum) and L-[U-14C]phenylalanine (49·6±3·59 μCi into the jugular vein) were also infused during the last 8 h. Blood from the CMV and FA was sampled during the isotope infusions. At the end of infusions, lambs were killed and tissue (n = 4) and digesta (n = 2) samples removed from the small intestine (SI) of each animal. Transfers of labelled and unlabelled Phe were measured between SI tissue, its lumen and blood, enabling both fractional and absolute rates of protein synthesis and gain to be estimated.Total SI mass increased significantly with feed intake (P < 0·05), although not on a liveweight basis. Fractional rates of protein gain in the SI tended to increase (P = 0·12) with feed intake; these rates were −16·2 (±13·7) and 23·3 (±15·2) % per day in lambs offered 400 and 1200 g/day respectively. Mean protein synthesis and fractional synthesis rates (FSR), calculated from the mean retention of 14C and 3H in SI tissue, were both positively affected by feed intake (0·01 < P < 0·05). The choice of free Phe pool for estimating precursor specific radioactivity (SRA) for protein synthesis had a major effect on FSR. Assuming that tissue free Phe SRA represented precursor SRA, mean FSR were 81 (±15) and 145 (±24) % per day in lambs offered 400 and 1200 g/day respectively. Corresponding estimates for free Phe SRA in the FA and CMV were 28 (±2·9) and 42 (±3·5) % per day on 400 g/day, and 61 (±2·9) and 94 (±6·0) on 1200 g/day. The correct value for protein synthesis was therefore in doubt, although indirect evidence suggested that blood SRA (either FA or CMV) may be closest to true precursor SRA. This evidence included (i) comparison with flooding dose estimates of FSR, (ii) comparison of 3H[ratio ]14C Phe SRA in free Phe pools with this ratio in SI protein, and (iii) the proportion of SI energy use associated with protein synthesis.Using the experimental model, the proportion of small intestinal protein synthesis exported was estimated as 0·13–0·27 (depending on the choice of precursor) and was unaffected by feed intake. The contribution of the small intestine to whole body protein synthesis tended to be higher in lambs offered 1200 g/day (0·21) than in those offered 400 g/day (0·13). The data obtained in this study suggested a role for the small intestine in modulating amino acid supply with changes in feed intake. At high intake (1200 g/day), the small intestine increases in mass and CMV uptake of amino acids is less than absorption from the lumen, while at low intake (400 g/day), this organ loses mass and CMV uptake of amino acids exceeds that absorbed. The implications of these findings are discussed.


1982 ◽  
Vol 48 (3) ◽  
pp. 527-541 ◽  
Author(s):  
B. R. Cottrill ◽  
D. E. Beever ◽  
A. R. Austin ◽  
D. F. Osbourn

1. A total of six diets based on maize silage were formulated to examine the effect of protein- and non-protein-nitrogen, and energy supplementation on the flow of amino acids to the small intestine and the synthesis of microbial amino acids in the rumen of growing cattle. All diets contained 24 g totai nitrogen (N)/kg dry matter (DM), of which 550 g N/kg total N was supplied by either urea or fish meal. Four diets contained low levels of barley (estimated total dietary metabolizable energy content of 10·4 M J/kgDM) and urea-N and fish meal-N were supplied in the ratios 3:1, 1·4:1, 0·6:1 and 0·3:1. The other two diets contained between 300 and 400 g barley/kg total diet (11·3 MJ metabolizable energy/kg DM) and the urea-N to fish meal-N ratios were 3:1 and 0·3:1.2. On the four low-energy diets, fish meal inclusion tended to reduce the extent of organic matter (OM) digestion in the rumen but significantly increased duodenal amino acid supply (P< 0·05) in a quadratic manner. Microbial-N synthesis was increased by the two intermediate levels of fish meal supplementation but declined at the highest level of inclusion. With increasing levels of fish meal inclusion, a greater proportion of the dietary protein was found to escape rumen degradation and the apparent degradabilities of fish meal and maize-silage protein of all four diets were estimated to be 0·22 and 0·73 respectively.3. The substitution of barley for part of the maize silage enhanced duodenal supply of amino acids, irrespective of the form of the N supplement, and stimulated microbial amino acid synthesis. For all diets efficiency of microbial-N synthesis was found to vary between 22·5 and 46 g N/kg rumen-digested OM. Contrary to what was found for low-energy diets, the inclusion of fish meal tended to reduce the flow of dietary protein to the small intestine, but these differences were not statistically significant.4. The results appertaining to microbial synthesis, dietary protein degradabilities and duodenal amino acid flow for all diets are discussed in relation to the Agricultural Research Council (1980) proposals for the protein requirements of ruminants, and the production responses observed when similar diets were fed to growing cattle.


2020 ◽  
Vol 98 (6) ◽  
Author(s):  
Hongyu Chen ◽  
Shihai Zhang ◽  
Sung Woo Kim

Abstract Forty pigs [10.7 ± 1.2 kg initial body weight (BW) at 6 wk of age] were used in a 21-d study to evaluate the effects of supplemental xylanase (Hostazym X 100, Huvepharma, Inc., Peachtree City, GA) in nursery diets on digesta viscosity, nutrient digestibility, health of the small intestine, and growth performance when supplemented with corn distillers’ dried grains with solubles (DDGS). Pigs were individually housed and randomly allotted to four treatments in a 2 × 2 factorial arrangement (n = 20/factor, 0% or 30% DDGS and 0 or 1,500 endo-pentosanase unit/kg xylanase as two factors) based on sex and initial BW. Feed intake and BW were recorded weekly. On day 15 of the study, TiO2 in diets (0.3%) was used as an indigestible marker to calculate apparent ileal digestibility (AID). Plasma samples were collected on day 19 to measure tumor necrosis factor-alpha (TNF-α), malondialdehyde, and peptide YY. On day 21, all pigs were euthanized to collect tissues from duodenum, jejunum, and colon to measure morphology, TNF-α, and malondialdehyde concentrations. Distal jejunal digesta were collected to measure viscosity. Ileum digesta were collected to measure AID of nutrients. During the entire period, supplemental xylanase increased (P &lt; 0.05) average daily gain (ADG; 616 to 660 g/d) of nursery pigs, whereas DDGS (0 or 30%) did not affect ADG. On week 3, average daily feed intake (ADFI) was increased (P &lt; 0.05) when fed DDGS (1,141 to 1,267 g/d) and there was an interaction (P &lt; 0.05) between two factors indicating that supplemental xylanase decreased ADFI when DDGS was used in a diet. Use of DDGS increased (P &lt; 0.05) viscosity [1.86 to 2.38 centipoise (cP)], whereas supplemental xylanase reduced (P &lt; 0.05) viscosity (2.27 to 1.96 cP) of jejunal digesta. The AID of dry matter (DM) and gross energy (GE) were improved (P &lt; 0.05) by supplemental xylanase. Plasma TNF-α was decreased (P &lt; 0.05, 108.5 to 69.9 pg/mL) by supplemental xylanase. Use of DDGS reduced (P &lt; 0.05) villus height:crypt depth ratio (1.46 to 1.27), whereas supplemental xylanase increased (P &lt; 0.05) the crypt depth (360 to 404 µm) in duodenum. In conclusion, feeding a diet with 30% DDGS to nursery pigs for 3 wk had no negative effect on growth performance, whereas reduced AID of DM and GE, increased TNF-α level in colon tissue, and reduced the ratio of villus height to crypt depth. Dietary supplementation of xylanase reduced digesta viscosity improving AID of nutrients, reduced inflammatory response, and altered intestinal morphology, collectively improving ADG of nursery pigs regardless of the use of DDGS in a diet.


2018 ◽  
Vol 156 (9) ◽  
pp. 1130-1137 ◽  
Author(s):  
Q. C. Ren ◽  
J. J. Xuan ◽  
X. C. Yan ◽  
Z. Z. Hu ◽  
F. Wang

AbstractThe current experiment aimed at assessing the effects of dietary supplementation of guanidino acetic acid (GAA) on growth performance, thigh meat quality and development of small intestine in broilers. A total of 360 1-day-old female broiler chicks were distributed randomly to four groups of 90 birds each, and each group received GAA dosages of 0, 0.4, 0.8 and 1.2 g/kg of feed dry matter. During the whole experiment of 60 days, broilers hadad libitumaccess to water and feed and the feed intake was recorded daily. All broilers were weighed before and after the experiment, and 30 broilers of each group were selected randomly to slaughter at the end. Increasing dietary supplementation of GAA increased final live weight and daily body weight gain, gain-to-feed ratio, thigh muscle pH value and fibre diameter of broilers, but decreased daily feed intake, drip loss, cooking loss, shear force value, hardness, gumminess and chewiness of thigh meat. In addition, increasing supplementation of GAA quadratically increased duodenal, jejunal and ileal villus height and width and ratio of villus height to crypt depth, but decreased crypt depth. The results indicated that GAA as a feed additive may support better development of small intestine, thereby resulting in improvement of growth performance and meat quality of broilers.


Parasitology ◽  
2004 ◽  
Vol 130 (2) ◽  
pp. 151-156 ◽  
Author(s):  
M. BARHAM ◽  
H. STÜTZER ◽  
P. KARANIS ◽  
B. M. LATIF ◽  
W. F. NEISS

We investigated the prevalence of sarcocystosis in 826 goats slaughtered in the winter season from November to April in northern Iraq. The prevalence of macrocysts was on average 34%, with only 20% infected animals in November, but 46% in February. The infection rate in 1-, 3- and 6-year-old goats was 4%, 48%, and 83%, respectively. The highest specificity of infection was in the oesophagus (99%) and the lowest in the diaphragm (3%). Grossly, we identified 2 forms of macroscopic sarcocysts, fat and thin, with different morphological characteristics. The prevalence of microcysts was 97% and no effects of age, sex and seasonal variations were observed. Development of microcysts in the small intestine of dogs and cats has also been investigated. The pre-patent period in experimentally infected dogs was 12–14 days and the patent period lasted 64–66 days. A dog shed about 155 million sporocysts, but no sporocysts were shed by cats that had been fed the same infected tissues, thus identifying the microcysts as Sarcocystis capracanis.


1979 ◽  
Vol 42 (3) ◽  
pp. 535-545 ◽  
Author(s):  
R. C. Siddons ◽  
R. T. Evans ◽  
D. E. Beever

1. Wilted perennial ryegrass (Lolium perenneL. cv. Endura) was ensiled without additive or after addition of a mixture of equal volumes of formic acid (850 g/kg) and formalin (380 g formaldehyde/kg) applied at a rate of 35 g formaldehyde/kg herbage crude protein (nitrogen × 6.25). The digestion of the two silages and the effect of supplemental N as urea or urea plus soya-bean meal on the digestion of the treated silage was studied using sheep fitted with a rumen cannula and re-entrant cannulas in the proximal duodenum and distal ileum.2. The additive markedly reduced carbohydrate fermentation and protein degradation in the silo.3. There were no significant differences between diets in rumen pH, dilution rate, volatile fatty acid production and the molar proportions of acetate, propionate and butyrate. However, rumen ammonia levels and the apparent digestibility of organic matter (OM), gross energy (GE) and cellulose in the stomach were significantly depressed (P< 0.05) by the additive. It also reduced (P< 0.05) the extent to which the N of the silage was degraded in the rumen and, with the treated silage, more microbial N was synthesized in the rumen than food N degraded, resulting in a net gain of N between mouth and duodenum, as compared to a net loss with the untreated silage.4. Supplementation of the treated silage with urea or urea plus soya-bean meal significantly increased (P< 0.05) the amount of food N degraded in the rumen and rumen ammonia levels but had no effect on the apparent digestibility of OM, GE and cellulose in the stomach or on the amount of microbial N reaching the duodenum.5. The quantity of microbial amino acids entering the small intestine and the apparent digestibility of amino acids in the small intestine were similar for all four diets. However, the quantity of food amino acids reaching the small intestine was significantly higher with the three diets containing the treated silage and consequently the apparent absorption of amino acids from the small intestine was substantially higher with these diets than with the untreated silage.


Parasitology ◽  
1970 ◽  
Vol 61 (3) ◽  
pp. 417-424 ◽  
Author(s):  
R. A. Preston-Mafham ◽  
A. H. Sykes

Heavy infections of E. acervulina result in a depression in body weight of the host, but anorexia induced by the disease is not the only factor responsible for this, since normal birds starved to the same extent did not lose as much weight. It was shown that the absorption of l-histidine and glucose from the infected part of the small intestine was depressed and may be a contributory factor to this weight loss; restricted feed intake alone tended to increase, rather than decrease, absorption.


2019 ◽  
Vol 98 (1) ◽  
Author(s):  
Sue A McCoard ◽  
Omar Cristobal-Carballo ◽  
Frederik W Knol ◽  
Axel Heiser ◽  
Muhammed A Khan ◽  
...  

Abstract AbstractThis study evaluated the effect of early weaning (EW) of artificially reared lambs using a restricted milk replacer (MR) feeding and step-down weaning system on the short- and long-term effects on growth, feed intake, selected blood metabolites and hormones, body composition, and small intestine development. Mixed-sex twin-born 2 to 5 d old lambs were randomly allocated to individual pens and fed MR at 20% of initial individual BW in week 1 and 15% in week 2 followed by weaning off MR by the end of week 4 (EW; n = 16) or week 6 (Control; Ctrl, n = 16) using a step-down procedure. Concentrate starter and fiber diets were offered ad libitum to week 9, then gradually removed over a 10-d period. All lambs were managed as a single group on pasture from weeks 6 to 16 of the trial. Feed intake was recorded daily in the first 6 wk, and BWs recorded weekly. At weeks 2, 4, 6, and 8, and pre- and postclostridial vaccination at week 8, blood samples were collected for analysis of selected blood metabolites, IGF-1, and immune function. Body composition was evaluated in eight animals per group at weeks 4 and 16 after euthanasia, and duodenal samples collected for histomorphometric evaluation. Early weaned lambs had lower DM, ME, CP, and NDF intake than Ctrl lambs at 21, 15, 21, and 36 d of rearing, respectively (P &lt; 0.001), driven by lower intakes of MR from day 15 (P &lt; 0.001) as per the experimental design, and lower total DMI of fiber (P = 0.001) from 21 to 42 d of rearing. Lamb BW tended (P = 0.097) to be lower in EW than Ctrl lambs from 5 to 10 wk of rearing, with lower ADG in EW lambs from weeks 3 to 6 (P = 0.041). Early weaning had negligible effects on duodenal morphology, organ, and carcass weights at weeks 4 and 16. Plasma metabolites (urea nitrogen, triglycerides, NEFA, glucose, and total protein) were similar between groups, while β-hydroxybutyrate was greater in EW than Ctrl lambs at weeks 4 and 6 (P = 0.018) but not week 8 indicative of early rumen development. Serum IGF-1 tended to be lower in EW than Ctrl lambs from weeks 2 to 6 only (P = 0.065). All lambs developed antibody responses postvaccination and there was no effect of treatment (P = 0.528). The results of this study illustrate that artificially reared lambs can be weaned off MR by 4 or 6 wk of rearing without compromising growth, small intestine morphology, major organ development, and body composition, nor immune function at either 4 (preweaning) or 16 (postweaning) wk of age.


2003 ◽  
Vol 89 (1) ◽  
pp. 97-103 ◽  
Author(s):  
C. A. Rodríguez ◽  
J. González ◽  
M. R. Alvir ◽  
R. Redondo ◽  
C. Cajarville

The present study was conducted to determine the effect of feed intake on the composition of the rumen contents of sheep and on their bacterial densities. Whole rumen contents were sampled after a period of continuous inter-rumen infusion of15NH3from four rumen-cannulated wethers successively fed on a hay–concentrate diet (2:1, / on a DM basis) at two rates of feed intake: 40 and 80 g D/g body weight0·75. Total weight and chemical composition of rumen contents, as well as the distribution by size and chemical composition of particles, were determined. The populations of bacteria associated with the liquid (liquid-associated bacteria, LAB) and solid (solid-associated bacteria, SAB) fractions of rumen digesta and the distribution of SAB according to feed particle size were also examined. The greater feed intake caused an increase in the mass of the rumen contents, while its chemical composition did not change, except for a higher content of organic matter (P=0·023). The distribution of feed particles by size was similar at both levels of intake. The concentrations of neutral- and acid-detergent fibre in feed particles decreased and those of total, dietary, and microbial N increased, both with a quadratic response (P=0·001), as particle size decreased. The proportion of LAB in the microbial biomass of rumen digesta reached only 8·0 %. This proportion and the density of LAB were unaffected by the level of feed intake, whereas an apparent reduction (10·4 %) occurred with the SAB biomass in whole rumen contents. A systematic, but not significant, reduction (mean value 11·9 %) in the level of microbial colonisation in the different particle fractions with the increase of feed intake was also observed.


Sign in / Sign up

Export Citation Format

Share Document