scholarly journals Dibenazoazepine, A Pharmacologically Active Moiety

2012 ◽  
Vol 1 (6) ◽  
pp. 41-44 ◽  
Author(s):  
P Panneerselvam
PRILOZI ◽  
2018 ◽  
Vol 39 (2-3) ◽  
pp. 97-106
Author(s):  
Ana Filipce ◽  
Zorica Naumovska ◽  
Aleksandra Kapedanovska Nestorovska ◽  
Zoran Sterjev ◽  
Katerina Brezovska ◽  
...  

Abstract Atypical antipsychotic risperidone is widely used first-line monotherapy in schizophrenia and combined therapy in bipolar disorders. Therapeutic plasma concentrations of risperidone and its active moiety are directly influenced by genetic variations in metabolic CYP450 enzymes (CYP2D6 and CYP3A4/5) and transporter (ABCB1) protein and additional environmental factors. Since active metabolite 9-OH risperidone has a greater percentage of the pharmacologically active fraction and is equipotent to the parent drug risperidone, it is assumed that it contributes significantly to therapeutic and adverse effects. Unpredictable dose/concentration ratio, narrow therapeutic index, number of interactions, along with serious adverse reactions (ADR), raises the need for individualization of risperidone treatment and establishing of good therapeutic regime using TDM. A simple and reliable validated bioanalytical liquide-liquide extraction HPLC/UV method was applied for the simultaneous determination of risperidone and its active metabolite, 9-OH risperidone, in human plasma and urine of 52 hospitalized schizophrenia/bipolar disorder patients treated with risperidone as monotherapy and in polytherapy. All the patients were previously genotyped for CYP2D6 (EM=30, EM/IM=14, IM=4 IM/PM=1 and PM=3) and ABCB1 using Real-Time PCR methods with TaqMan SNP genotyping suitable assays according to the guidelines of the manufacturer (Life Technologies, USA).The influence of CYP2D6 phenotype on metabolic ratio MR (Ris/9-OHRis) in plasma (p=0.012) and in urine (p=0.048) was confirmed. Statistically significant correlation (R2=55.53%, Rho=0.844, p<0,0001) for MR in both plasma and urine indicates that urine may be utilized as appropriate media for initial CYP2D6 phenotype identification and selection of patients on risperidone treatment with high risk for ADR.


Author(s):  
Niharika Chauhan

Habitual consumption of raw fruits as well as vegetables can trim down the threat of many diseases. Ginger is consumed globally as a cuisine and herbal medicine. It is rich in pungent phenolic phytochemical substances together called gingerols. 6-Gingerol (1-[4’-hydroxy-3’-methoxyphenyl]-5-hydroxy-3- decanone) is the chief pharmacologically-active moiety of ginger. Molecularly, gingerol is a relative of capsaicin and piperine, the compounds which are alkaloids, though the bioactive pathways are unconnected. It is normally found as pungent yellow oil in the ginger rhizome, but can also form a low-melting crystalline solid. Previous studies have suggested ample of therapeutic activities including anticancer, anti-inflammation and anti-oxidation. 6-Gingerol has been found to possess anticancer activities via its effect on a variety of biological pathways involved in apoptosis, cell cycle regulation, cytotoxic activity and inhibition of angiogenesis. Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, 6-gingerol has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various diseases. Overall, this review encapsulates different therapeutic and pharmacological facets of 6-gingerol along with its possible mechanism of action.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381 ◽  
Author(s):  
S Sturm ◽  
K Gallmetzer ◽  
A Friedl ◽  
B Waltenberger ◽  
V Temml ◽  
...  

2017 ◽  
Vol 3 (4) ◽  
pp. 383-391
Author(s):  
Mohd Asif Khan ◽  
Shashi Bhooshan Tiwari ◽  
Himanshu Gupta ◽  
Huma Noor

Since ancient time, herbal drugs were highly used in the prevention and cure of various human illnesses. In India, Azadirachta indica being commonly known as Neem or Margosa is one of the multi-functional trees; belonging to Meliaceae family. In 1992, the US National Academy of Sciences was published a report entitled ‘Neem- a tree for solving global problems’. It is still considered as ‘village dispensary’ throughout the India. There are two species of Azadirachta which have been investigated; Azadirachta indica that is found in the Indian subcontinent and Azadirachta excelsa Kack that is homegrown to Indonesia and Philippines. A large number of pharmacologically active substances have been identified and isolated from the different parts of neem including azadirachtin, meliacin, gedunin, salanin, nimbin, valassin and various other components which are derived from these main compounds. Many different studies have been evaluated and authenticated for its various traditional and pharmacological activities like itching, leprosy, wound healing, spermicidal, anti-inflammatory, insecticidal, antidiabetic and analgesic etc. In the beginning of 1979, patenting on neem was started by CSIR to separate the active compounds from neem oil. Its great implantation fights with soil erosion, global warming, deforestations and desertification world-wide. In 2002, World Neem Conference raised the neem tree as an industrial or commercial plant. This review is going to explore comprehensively; traditional, pharmacological potential along with patenting, environmental & industrial significant of various parts of neem tree with safety concerns.


2020 ◽  
Vol 11 (3) ◽  
pp. 3384-3390
Author(s):  
Ashish ◽  
Anjali ◽  
Dixit Praveen K ◽  
Nagarajan K ◽  
Sahoo Jagannath

Justicia gendarussa Burm .f. (family Acanthaceae) which is also known as willow-leaves and commonly known as Nili-Nirgundi, it is very commonly found nearby to China and its availability is very common in larger parts of India and Andaman islands. Traditionally it is used to treat various sorts of disorders such as wound healing, anti-inflammatory, anti-oxidant, antiproliferative, anti-arthritic etc. Justicia gendarussa is one of the crucial herbs which has been used in the Ayurveda. Majorly leaves parts of the plant shows the pharmacological activity but the root of the plant Justicia gendarussa is also have the important medicinal values. A large variety of pharmacologically active constituents i.e., alkaloids, flavonoids, saponin, carbohydrates, steroids, triterpenoids, carotenoids, aminoacids, tannins, phenolics, coumarines and anthaquinones are also present in this plant and they makes the plant pharmacologically important. The activity of the plant is also dependent on the solvent which is used for the extraction the various vital chemical constituents. The different- different parts of the plants having the different medicinal values also differ in the chemical values. This review is not only focused on the essential phytochemical constituents which is available in the plant but it also explains their necessary medicinal value to shows the essential biological action and phytopharmacological actions of various parts of the plant.


Author(s):  
Miriam del Carmen Carrasco-Portugal ◽  
Francisco Javier Flores-Murrieta

Pharmaceutical alternatives are products with the same active moiety, but different salt, ester or pharmaceutical form. Regulatory agencies have different criteria for this kind of drug. The European Medicines Agency (EMA) accepts the generic substitution using these alternatives, whereas the Food and Drug Administration (FDA) only authorizes generic substitution of pharmaceutical equivalents. The objective of this paper is to describe some relevant aspects that should be considered before deciding on making a generic substitution with pharmaceutical alternatives. It is important to note that a pharmaceutical alternative must show no significant difference in the rate and extent of absorption (bioequivalence) in a well-conducted in vivo study when compared with the reference formulation. Current Mexican regulations state that generic substitution is possible using pharmaceutical alternatives when bioequivalence is demonstrated in in vivo studies conducted under the NOM-177-SSA1-2013 criteria. In conclusion, generic substitution with pharmaceutical alternatives is possible if these products demonstrate in vivo bioequivalence when compared with the reference product.


Author(s):  
Preethi Sudheer ◽  
Koushik Y ◽  
Satish P ◽  
Uma Shankar M S ◽  
R S Thakur

As a consequence of modern drug discovery techniques, there has been a steady increase in the number of new pharmacologically active lipophilic compounds that are poorly water soluble and solubility is one of the most important parameter to achieve desired concentration of drug in systemic circulation for therapeutic response. It is a great challenge for pharmaceutical scientist to convert those molecules into orally administered formulation with sufficient bioavailability.  Among the several approaches to improve oral bioavailability of these molecules, Self-micron emulsifying drug delivery system (SMEDDS) is one of the approaches usually used to improve the bioavailability of hydrophobic drugs. However, conventional SMEDDS are mostly prepared in a liquid form, which can have several disadvantages. Accordingly, solid SMEDDS (S-SMEDDS) prepared by solidification of liquid/semisolid self-micron emulsifying (SME) ingredients into powders have gained popularity. This article provides an overview of the recent advancements in S-SMEDDS such as methodology, techniques and future research directions.


Author(s):  
Harish Rajak ◽  
Murli Dhar Kharya ◽  
Pradeep Mishra

There are vast numbers of pharmacologically active heterocyclic compounds in regular clinical use. The presence of heterocyclic structures in diverse types of compounds is strongly indicative of the profound effects such structure exerts on physiologic activity, and recognition of this is abundantly reflected in efforts to find useful synthetic drugs. The 1,3,4-oxadiazole nucleus has emerged as one of the potential pharmacophore responsible for diverse pharmacological properties. Medical Literature is flooded with reports of a variety of biological activities of 2,5-Disubstituted-1,3,4-oxadiazoles. The present work is an attempt to summarize and enlist the various reports published on biologically active 2,5-disubstituted-1,3,4-oxadiazoles.


2020 ◽  
Vol 27 (2) ◽  
pp. 187-215 ◽  
Author(s):  
Lavinia Raimondi ◽  
Angela De Luca ◽  
Gianluca Giavaresi ◽  
Agnese Barone ◽  
Pierosandro Tagliaferri ◽  
...  

: Chemoprevention is based on the use of non-toxic, pharmacologically active agents to prevent tumor progression. In this regard, natural dietary agents have been described by the most recent literature as promising tools for controlling onset and progression of malignancies. Extensive research has been so far performed to shed light on the effects of natural products on tumor growth and survival, disclosing the most relevant signal transduction pathways targeted by such compounds. Overall, anti-inflammatory, anti-oxidant and cytotoxic effects of dietary agents on tumor cells are supported either by results from epidemiological or animal studies and even by clinical trials. : Multiple myeloma is a hematologic malignancy characterized by abnormal proliferation of bone marrow plasma cells and subsequent hypercalcemia, renal dysfunction, anemia, or bone disease, which remains incurable despite novel emerging therapeutic strategies. Notably, increasing evidence supports the capability of dietary natural compounds to antagonize multiple myeloma growth in preclinical models of the disease, underscoring their potential as candidate anti-cancer agents. : In this review, we aim at summarizing findings on the anti-tumor activity of dietary natural products, focusing on their molecular mechanisms, which include inhibition of oncogenic signal transduction pathways and/or epigenetic modulating effects, along with their potential clinical applications against multiple myeloma and its related bone disease.


2019 ◽  
Vol 26 (18) ◽  
pp. 3260-3278 ◽  
Author(s):  
Hayrettin Ozan Gulcan ◽  
Açelya Mavideniz ◽  
Mustafa Fethi Sahin ◽  
Ilkay Erdogan Orhan

Benzimidazole scaffold has been efficiently used for the design of various pharmacologically active molecules. Indeed, there are various benzimidazole drugs, available today, employed for the treatment of different diseases. Although there is no benzimidazole moiety containing a drug used in clinic today for the treatment of Alzheimer’s Disease (AD), there have been many benzimidazole derivative compounds designed and synthesized to act on some of the validated and non-validated targets of AD. This paper aims to review the literature to describe these benzimidazole containing molecules designed to target some of the biochemical cascades shown to be involved in the development of AD.


Sign in / Sign up

Export Citation Format

Share Document