scholarly journals Natural Products from Actinomycetes Associated with Marine Organisms

Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 629
Author(s):  
Jianing Chen ◽  
Lin Xu ◽  
Yanrong Zhou ◽  
Bingnan Han

The actinomycetes have proven to be a rich source of bioactive secondary metabolites and play a critical role in the development of pharmaceutical researches. With interactions of host organisms and having special ecological status, the actinomycetes associated with marine animals, marine plants, macroalgae, cyanobacteria, and lichens have more potential to produce active metabolites acting as chemical defenses to protect the host from predators as well as microbial infection. This review focuses on 536 secondary metabolites (SMs) from actinomycetes associated with these marine organisms covering the literature to mid-2021, which will highlight the taxonomic diversity of actinomycetes and the structural classes, biological activities of SMs. Among all the actinomycetes listed, members of Streptomyces (68%), Micromonospora (6%), and Nocardiopsis (3%) are dominant producers of secondary metabolites. Additionally, alkaloids (37%), polyketides (33%), and peptides (15%) comprise the largest proportion of natural products with mostly antimicrobial activity and cytotoxicity. Furthermore, the data analysis and clinical information of SMs have been summarized in this article, suggesting that some of these actinomycetes with multiple host organisms deserve more attention to their special ecological status and genetic factors.

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4534
Author(s):  
Taitusi Taufa ◽  
Ramesh Subramani ◽  
Peter Northcote ◽  
Robert Keyzers

The islands of the South Pacific Ocean have been in the limelight for natural product biodiscovery, due to their unique and pristine tropical waters and environment. The Kingdom of Tonga is an archipelago in the central Indo-Pacific Ocean, consisting of 176 islands, 36 of which are inhabited, flourishing with a rich diversity of flora and fauna. Many unique natural products with interesting bioactivities have been reported from Indo-Pacific marine sponges and other invertebrate phyla; however, there have not been any reviews published to date specifically regarding natural products from Tongan marine organisms. This review covers both known and new/novel Marine Natural Products (MNPs) and their biological activities reported from organisms collected within Tongan territorial waters up to December 2020, and includes 109 MNPs in total, the majority from the phylum Porifera. The significant biological activity of these metabolites was dominated by cytotoxicity and, by reviewing these natural products, it is apparent that the bulk of the new and interesting biologically active compounds were from organisms collected from one particular island, emphasizing the geographic variability in the chemistry between these organisms collected at different locations.


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 670 ◽  
Author(s):  
Xiaoju Dou ◽  
Bo Dong

Marine ascidians are becoming important drug sources that provide abundant secondary metabolites with novel structures and high bioactivities. As one of the most chemically prolific marine animals, more than 1200 inspirational natural products, such as alkaloids, peptides, and polyketides, with intricate and novel chemical structures have been identified from ascidians. Some of them have been successfully developed as lead compounds or highly efficient drugs. Although numerous compounds that exist in ascidians have been structurally and functionally identified, their origins are not clear. Interestingly, growing evidence has shown that these natural products not only come from ascidians, but they also originate from symbiotic microbes. This review classifies the identified natural products from ascidians and the associated symbionts. Then, we discuss the diversity of ascidian symbiotic microbe communities, which synthesize diverse natural products that are beneficial for the hosts. Identification of the complex interactions between the symbiont and the host is a useful approach to discovering ways that direct the biosynthesis of novel bioactive compounds with pharmaceutical potentials.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 321 ◽  
Author(s):  
Minghua Jiang ◽  
Zhenger Wu ◽  
Heng Guo ◽  
Lan Liu ◽  
Senhua Chen

Marine-derived fungi are a significant source of pharmacologically active metabolites with interesting structural properties, especially terpenoids with biological and chemical diversity. In the past five years, there has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered. In this updated review, we examine the chemical structures and bioactive properties of new terpenes from marine-derived fungi, and the biodiversity of these fungi from 2015 to 2019. A total of 140 research papers describing 471 new terpenoids of six groups (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and meroterpenes) from 133 marine fungal strains belonging to 34 genera were included. Among them, sesquiterpenes, meroterpenes, and diterpenes comprise the largest proportions of terpenes, and the fungi genera of Penicillium, Aspergillus, and Trichoderma are the dominant producers of terpenoids. The majority of the marine-derived fungi are isolated from live marine matter: marine animals and aquatic plants (including mangrove plants and algae). Moreover, many terpenoids display various bioactivities, including cytotoxicity, antibacterial activity, lethal toxicity, anti-inflammatory activity, enzyme inhibitor activity, etc. In our opinion, the chemical diversity and biological activities of these novel terpenoids will provide medical and chemical researchers with a plenty variety of promising lead compounds for the development of marine drugs.


RSC Advances ◽  
2020 ◽  
Vol 10 (57) ◽  
pp. 34959-34976
Author(s):  
Enas Reda Abdelaleem ◽  
Mamdouh Nabil Samy ◽  
Samar Yehia Desoukey ◽  
Miaomiao Liu ◽  
Ronald J. Quinn ◽  
...  

Marine organisms have been considered an interesting target for the discovery of different classes of secondary natural products with wide-ranging biological activities.


Author(s):  
Sanrda Kim Tiam ◽  
Muriel Gugger ◽  
Justine Demay ◽  
Severine Le Manach ◽  
Charlotte Duval ◽  
...  

Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with diverse chemical structures and potent biological activities and toxicities. The chemical identification of these compounds remains a major bottleneck. Strategies that can prioritize the most prolific strains and novel compounds are of great interest. Here, we combine chemical analysis and genomics to investigate the chemodiversity of secondary metabolites based on their pattern of distribution within some cyanobacteria. Planktothrix being a cyanobacterial genus known to form blooms worldwide and to produce a broad spectrum of toxins and other bioactive compounds, we applied this combined approach on four closely related strains of Planktothrix. The chemical diversity of the metabolites produced by the four strains was evaluated using an untargeted metabolomics strategy with high-resolution LC-MS. Metabolite profiles were correlated with the potential of metabolite production identified by genomics for the different strains. Although, the Planktothrix strains present a global similarity in term biosynthetic cluster gene for microcystin, aeruginosin and prenylagaramide for example, we found remarkable strain-specific chemo-diversity. Only few of the chemical features were common to the four studied strains. Additionally, the MS/MS data were analyzed using Global Natural Products Social Molecular Networking (GNPS) to identify molecular families of the same biosynthetic origin. In conclusion, we present an efficient integrative strategy for elucidating the chemical diversity of a given genus and link the data obtained from analytical chemistry to biosynthetic genes of cyanobacteria.


2020 ◽  
Vol 27 ◽  
Author(s):  
Tian-Tian Sun ◽  
Hua-Jie Zhu ◽  
Fei Cao

: Respiratory viruses, including influenza virus, respiratory syncytial virus, coronavirus, et al., have seriously threatened the human health. For example, the outbreak of severe acute respiratory syndrome coronavirus, SARS, affected a large number of countries around the world. Marine organisms, which could produce secondary metabolites with novel structures and abundant biological activities, are an important source for seeking effective drugs against respiratory viruses. This report reviews marine natural products with activities against respiratory viruses, the emphasis of which was put on structures and antiviral activities of these natural products. This review has described 167 marine-derived secondary metabolites with activities against respiratory viruses published during 1981 to 2019. Altogether 102 references are cited in this review article.


2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095143
Author(s):  
Qianqian He ◽  
Shuang Miao ◽  
Na Ni ◽  
Yuqing Man ◽  
Kaikai Gong

Marine sponges, which belong to the phylum Porifera (Metazoa), are considered the single best source of marine natural products. Among them, members of the genus Aaptos are attractive targets for marine natural product research owing to their abundant biogenetic ability to produce aaptamine derivatives. Apart from aaptamine alkaloids, there are also reports of other compounds from Aaptos sponges. This work reviews the secondary metabolites isolated from Aaptos species from 1982 to 2020, with 46 citations referring to 62 compounds (47 for aaptamines and 15 for others). The emphasis is placed on the structure of the organic molecules, relevant biological activities, chemical ecology aspects, and biosynthesis studies, which are described in the classifications of aaptamines and other compounds in the order of the published year.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 337 ◽  
Author(s):  
Salehi ◽  
Iriti ◽  
Vitalini ◽  
Antolak ◽  
Pawlikowska ◽  
...  

Euphorbia genus (Euphorbiaceae family), which is the third largest genus of angiosperm plants comprising ca. 2000 recognized species, is used all over the world in traditional medicine, especially in the traditional Chinese medicine. Members of this taxa are promptly recognizable by their specialized inflorescences and latex. In this review, an overview of Euphorbia-derived natural products such as essential oils, extracts, and pure compounds, active in a broad range of biological activities, and with potential usages in health maintenance, is described. The chemical composition of essential oils from Euphorbia species revealed the presence of more than 80 phytochemicals, mainly oxygenated sesquiterpenes and sesquiterpenes hydrocarbons, while Euphorbia extracts contain secondary metabolites such as sesquiterpenes, diterpenes, sterols, flavonoids, and other polyphenols. The extracts and secondary metabolites from Euphorbia plants may act as active principles of medicines for the treatment of many human ailments, mainly inflammation, cancer, and microbial infections. Besides, Euphorbia-derived products have great potential as a source of bioactive extracts and pure compounds, which can be used to promote longevity with more health.


2016 ◽  
Vol 33 (3) ◽  
pp. 456-490 ◽  
Author(s):  
Roberto G. S. Berlinck ◽  
Stelamar Romminger

The present review discusses the isolation, structure determination, synthesis, biosynthesis and biological activities of secondary metabolites bearing a guanidine group.


2021 ◽  
Vol 66 (1) ◽  
Author(s):  
Mohammed I. Rushdi ◽  
Iman A. M. Abdel- Rahman ◽  
Hani Saber ◽  
Eman Zekry Attia ◽  
Usama Ramadan Abdelmohsen

Abstract. Genus Dictyopteris is an important genus among marine seaweeds and is excessively distributed and known by its ocean smell due to its secondary metabolites including C11-hydrocarbons and sulfur compounds. This chemical feature is responsible for its interesting biological properties. This review detected the literature from 1959 to 2021 on the genus Dictyopteris and revealed the secondary metabolites, together with biological activities of the genus Dictyopteris to create the base for additional studies on its clinical and pharmaceutical applications.   Resumen. El género Dictyopteris es un género importante entre las algas marinas y está excesivamente distribuido y conocido por su olor a océano debido a sus metabolitos secundarios que incluyen hidrocarburos C11 y compuestos de azufre. Esta característica química es responsable de sus interesantes propiedades biológicas. Esta revisión detectó la literatura de 1959 a 2021 sobre el género Dictyopteris y reveló los metabolitos secundarios, junto con las actividades biológicas del género Dictyopteris, para crear la base para estudios adicionales sobre sus aplicaciones clínicas y farmacéuticas.


Sign in / Sign up

Export Citation Format

Share Document