scholarly journals STUDY OF THE EVAPORATION PROCESS OF MOTHER LIQUORS IN THE PRODUCTION OF POTASSIUM NITRATE

2021 ◽  
pp. 9-13

"The aim was to study the influence of the main technological parameters on the process of evaporation off the primary mother liquors of the filtration process of a potassium nitrate suspension formed as a result of crystallization of the conversion solution at a temperature of 0 °C. A theoretical analysis of the system diagram and experimental data established the sequence of the formation of components during the evaporation of mother liquors. At the same time, in the studied intervals of variation of the parameters, potassium chloride is formed first, and then, the joint crystallization of potassium and ammonium chlorides occurs with the continuation of the evaporation process, and when the evaporation degree is more than 30-35%, the joint crystallization of potassium, ammonium and potassium nitrate chlorides occurs. The process analytical parameters influence of the ratio of the primary mother liquor and ammonium nitrate, as well as, the degree of evaporation have been studied. A nomogram has been developed showing the dependence of the input and output parameters on the value of the residual pressure, and it makes possible to determine the values ​​of the evaporation degree at given conditions. "

2013 ◽  
Vol 6 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Jana Jurišová ◽  
Pavel Fellner ◽  
Vladimír Danielik ◽  
Marek Lencsés ◽  
Milan Králik ◽  
...  

Abstract Preparation of potassium nitrate from magnesium nitrate and potassium chloride was investigated. Prepared potassium nitrate contains less than 0.5 % chlorides and it can be applied as environmentally friendly fertilizer in hydroponic systems. After filtration out potassium nitrate crystals from the reciprocal system K+, Mg2+//Cl-, NO3- - H2O, the mother liquor still contains reasonable amount of potassium cations. By evaporation of the mother liquor, carnallite (MgCl2・KCl・6H2O) with admixture of MgCl2・6H2O crystallizes out. Decomposition of carnallite with cold water makes it possible to separate potassium chloride from this compound. When this KCl is returned back to the process of KNO3 making, utilization of potassium as high as 97 % can be achieved.


Author(s):  
A. Gómez ◽  
P. Schabes-Retchkiman ◽  
M. José-Yacamán ◽  
T. Ocaña

The splitting effect that is observed in microdiffraction pat-terns of small metallic particles in the size range 50-500 Å can be understood using the dynamical theory of electron diffraction for the case of a crystal containing a finite wedge. For the experimental data we refer to part I of this work in these proceedings.


Optics ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 25-42
Author(s):  
Ioseph Gurwich ◽  
Yakov Greenberg ◽  
Kobi Harush ◽  
Yarden Tzabari

The present study is aimed at designing anti-reflective (AR) engraving on the input–output surfaces of a rectangular light-guide. We estimate AR efficiency, by the transmittance level in the angular range, determined by the light-guide. Using nano-engraving, we achieve a uniform high transmission over a wide range of wavelengths. In the past, we used smoothed conical pins or indentations on the faces of light-guide crystal as the engraved structure. Here, we widen the class of pins under consideration, following the physical model developed in the previous paper. We analyze the smoothed pyramidal pins with different base shapes. The possible effect of randomization of the pins parameters is also examined. The results obtained demonstrate optimized engraved structure with parameters depending on the required spectral range and facet format. The predicted level of transmittance is close to 99%, and its flatness (estimated by the standard deviation) in the required wavelengths range is 0.2%. The theoretical analysis and numerical calculations indicate that the obtained results demonstrate the best transmission (reflection) we can expect for a facet with the given shape and size for the required spectral band. The approach is equally useful for any other form and of the facet. We also discuss a simple way of comparing experimental and theoretical results for a light-guide with the designed input and output features. In this study, as well as in our previous work, we restrict ourselves to rectangular facets. We also consider the limitations on maximal transmission produced by the size and shape of the light-guide facets. The theoretical analysis is performed for an infinite structure and serves as an upper bound on the transmittance for smaller-size apertures.


2011 ◽  
Vol 368-373 ◽  
pp. 2483-2490
Author(s):  
Yao Ting Zhang ◽  
Yi Zheng ◽  
Hong Jian Li

A dynamic test of two unbonded fully prestressed concrete beams has been conducted. The results indicate that the natural frequency of beams increases with the prestress force, which is opposite to the analytical arguments for homogeneous and isotropic beams subject to axial force. This paper explains the change in frequencies by discussing the change in the elastic modulus. A modified formula is also proposed, and the experimental data agree well with the theoretical analysis.


2013 ◽  
Vol 575-576 ◽  
pp. 543-549
Author(s):  
Hai Xiong Wang ◽  
Ji Bin Li ◽  
Yong Hu Lv

Thermal microimprint is a promising technology for polymer microstructure, so it is used to form V-groove on the surface of optical devices. However, it is difficult to control the size accuracy of V-groove because of the elastic recovery of polymer. In order to solve the problem, the influencing factors on the polymer elastic recovery were firstly analyzed in this article. Then, it was proposed that the embossment height of mold should be modified according to the depth of V-groove and the modifier formulas should be constructed based on the theory of polymer viscoelasticity. In the end, the optimal technological parameters of thermal microimprint were obtained through the thermal imprint experiments, and the embossment height of the mold after modification was calculated according to the experimental data, and thus a new mold was produced as to verify the accuracy of the modifier formulas. The results showed that the approach of modification could not only ensure dimension accuracy of V-groove, by keeping the error within 1μm, but also shorten the imprint time, consequently the efficiency of thermal microimprint would be improved.


Author(s):  
Gabriela Alor-Saavedra ◽  
Francisco Alejandro Alaffita-Hernández ◽  
Beatris Adriana Escobedo-Trujillo ◽  
Oscar Fernando Silva-Aguilar

This work makes a comparative study of two methods to determine deflection in steel beams: (a) Theoretical and (b) Finite element. For method (a) the solution of the differential equation associated with the modeling of the deflection of a beam is found, while for method (b) a simulation is made in Solidworks. Both methods are compared with experimental data in order to analyze which of the methods presents less uncertainty and show the usefulness of the theoretical part in the modeling of physical systems.


Author(s):  
Yu. A. Taran ◽  
A. V. Kozlov ◽  
A. L. Taran

The aim of the work is to consider the mechanism of clogging the pores of the filter unit by small particles from the flow of filtrate inside them. Theoretical ideas about the process of filtering with the deposition of small particles from the filtrate on the pore walls and attribution of its fundamentals to restructuring from the original structure to the final structure allow to describe the process of clogging the pores using well studied concepts of known processes with phase transformations (in particular, crystallization). Based on this analogy and the approach to the description of the transformation of the "old" structure into a "new" one in time, using experimental data and their processing we calculated the rate of nucleation of the sediment centers (ωnucl), the linear (υlin) and volumetric rates of sediment plaques growth in the pores of the filter unit at different values of the process driving force, at different pressure difference in the system, and at different concentrations of solid particles in the suspension. Interpolation and extrapolation dependences were obtained for analyzing the mechanisms of sediments formation and growth for determining and calculating these (ωnucl, υlin) rates. Using the concepts of nonequilibrium thermodynamics to assess the influence of the driving forces we studied their influence (changes in the concentration of solid particles in the filtrate suspension and pressure drop across the filtering layer) on the dynamics of the filtration process. Using the data obtained it is possible to find the degree of clogging of through pores, which determines the filtration conditions, the filter septum type, and the filter overall dimensions.


Author(s):  
Elhoucine Essefi ◽  
Mohamed Ali Tagorti

Abstract This work aimed to study the formation of salt through a progressive evaporation of sebkha El Melah brine. The precipitated salt in the case of sebkha El Melah is variable along the progressive evaporation. Weights of salt after each phase of precipitation indicate a heterogeneous evaporation process cumulating at 315 g L−1. With an increasing evaporation of El Melah brine, the number of precipitated mineral species increased. The cumulative number of species along the evaporation process reached 20, including principally: Halite (NaCl) (73–95%), epsomite (MgSO4·7H2O) (7–14%), bischofite (MgCl2:6H2O) (1%), Kieserite Mg(SO4)(H2O) (0–2%), magnesite (MgCO3) (1–4%), polyhalite (K2Ca2Mg(SO4)4,2H2O). Also, the thermodynamic theoretical modeling of the El Melah brine shows convergence with geochemical and mineralogical experimental data. At an evaporation rate of 60%, the sebkha of El Melah annually provides with 315,000 tons of salt. The majority of salt (80%) is halite. The remaining 20% contains different species having a huge economic interest. From an industrial viewpoint, our study shows that the purity of halite is guaranteed at low rates of evaporation. Evaporation between 50 and 75% produces a mixture dominated by halite. Evaporation higher than 75% needs further studies to find the mineralogical composition and the phase of each mineral precipitation. The saline system of El Melah represents a geoeconomic interest due to the cheap natural process of production, its large quantity of halite with varieties of other accessory minerals, and cheap procedure of exportation.


1993 ◽  
Vol 313 ◽  
Author(s):  
Kamakhya P Ghatak ◽  
S. N. Biswas

ABSTRACTIn this paper we have studied the dia and paramagnetic susceptibilities of the holes in ultrathin films of dilute magnetic materials in the presence of a quantizing magnetic field and compared the same with that of the bulk specimens under magnetic quantization for the purpose of relative comparison. It is found, taking Hg1−xMnxTe and Cd1−xMnxSe as examples, that both the susceptibilities increase with decreasing film thickness and increasing surface concentration in oscillatory Manners. The numerical values of the susceptibilities in ultrathin films of dilute magnetic materials are greater than that of the bulk and the theoretical analysis is in agreement with the experimental data as reported elsewhere.


Sign in / Sign up

Export Citation Format

Share Document