scholarly journals Phosphorylation of PUF-A/PUM3 on Y259 modulates PUF-A stability and cell proliferation

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256282
Author(s):  
Hung-Wei Lin ◽  
Jin-Yu Lee ◽  
Nai-Lin Chou ◽  
Ting-Wei Shih ◽  
Mau-Sun Chang

Human PUF-A/PUM3 is a RNA and DNA binding protein participating in the nucleolar processing of 7S to 5.8S rRNA. The nucleolar localization of PUF-A redistributes to the nucleoplasm upon the exposure to genotoxic agents in cells. However, little is known regarding the roles of PUF-A in tumor progression. Phosphoprotein database analysis revealed that Y259 phosphorylation of PUF-A is the most prevalent residue modified. Here, we reported the importance of PUF-A’s phosphorylation on Y259 in tumorigenesis. PUF-A gene was knocked out by the Crispr/Cas9 method in human cervix epithelial HeLa cells. Loss of PUF-A in HeLa cells resulted in reduced clonogenic and lower transwell invasion capacity. Introduction of PUF-AY259F to PUF-A deficient HeLa cells was unable to restore colony formation. In addition, the unphosphorylated mutant of PUF-A, PUF-AY259F, attenuated PUF-A protein stability. Our results suggest the important role of Y259 phosphorylation of PUF-A in cell proliferation.

2021 ◽  
Vol 11 ◽  
Author(s):  
Xueyou Ma ◽  
Yufan Ying ◽  
Haiyun Xie ◽  
Xiaoyan Liu ◽  
Xiao Wang ◽  
...  

TAR-DNA-binding protein-43 (TDP-43) is a member of hnRNP family and acts as both RNA and DNA binding regulator, mediating RNA metabolism and transcription regulation in various diseases. Currently, emerging evidence gradually elucidates the crucial role of TDP-43 in human cancers like it is previously widely researched in neurodegeneration diseases. A series of RNA metabolism events, including mRNA alternative splicing, transport, stability, miRNA processing, and ncRNA regulation, are all confirmed to be closely involved in various carcinogenesis and tumor progressions, which are all partially regulated and interacted by TDP-43. Herein we conducted the first overall review about TDP-43 and cancers to systematically summarize the function and precise mechanism of TDP-43 in different human cancers. We hope it would provide basic knowledge and concepts for tumor target therapy and biomarker diagnosis in the future.


2019 ◽  
Vol 28 (9-10) ◽  
pp. 1299-1305 ◽  
Author(s):  
Li Ma ◽  
Ling-Ling Li

The purpose of our study was to investigate the underlying mechanism and functional role of microRNA-145 (miR-145) in cervical cancer. In this study, quantitative real-time PCR (qRT-PCR) was used to detect miR-145 and FSCN1 expression levels in tissues and HeLa cells. Western blotting was performed to determine the protein level of FSCN1. The luciferase assay was used to verify the direct target of miR-145. The CCK-8 assay and 2D colony formation assays were performed to determine the effects of miR-145 mimics or FSCN1 silencing on cell proliferation. miR-145 expression levels were significantly down-regulated, while FSCN1 expression levels were significantly up-regulated in the cervical carcinoma tissues compared with their matched non-cancerous tissues. In addition, FSCN1 expression levels were negatively correlated to miR-145 in tissues. Next, FSCN1 was verified as the direct target of miR-145 in HeLa cells. Moreover, overexpression of miR-145 dramatically inhibited the proliferation of HeLa cells. The silencing of FSCN1 exhibited the similar patterns on cell proliferation as miR-145 overexpression. The miR-145/ FSCN1 axis contributes to the progression of cervical cancer by inhibition of cervical cancer cell proliferation.


2018 ◽  
Vol 25 (12) ◽  
pp. 1954-1960
Author(s):  
Farah Deeba Khan ◽  
Ghazala Irshad ◽  
Samra Hafiz

Objectives: Cancer, the most complex group of genetic disorders results due to over expression or mutation of oncogenes/molecules involved in cell signaling pathways. KRAS is an oncogene that encodes a small GTPase protein with two isoforms KRasA & KRasB and is involved in the regulation of cell division. KRas is frequently found mutated in lung, pancreas, colorectal and many other cancers. Various studies have found that KRasB promotes cell proliferation and inhibits apoptosis whereas KRasA has negligible role in cell proliferation or rather is involved in apoptosis at times. Several experiments have shown tumor growth inhibition by silencing KRas in various tumor models having a differential allelic expression.The goal of our study was to determine the possible differential role of KRas A and B on MAPK Pathway. To examine the disparity in role of various isoforms of KRas on apoptosis, we evaluated the expression of these isoforms through different modalities in HeLa cells before and after silencing KRas through RNA interference. Study Design: In vitro study for isolation of protein molecules (Proteomics) and to study various genes (Genomics) through Polymerase chain reaction. Study Duration: December, 2011-September, 2014. Setting: Center for Research in Molecular Medicine, University of Lahore. Material & Methods: In present study, we studied the expression level and behavior of many sets of molecules such as KRasA, KrasB, Bad, Bcl2, BclxL and Mcl-1 through gene quantitation by Real Time PCR. We also analyzed the protein expression through Western blot immune-precipitation. All the tests were done before and after 48-hours of silencing of HeLa cells with shRNA designed for KRas. Results: We successfully downregulated KRasB (80%) but found upregulation of KRasA with continued cell proliferation. We also found overexpression of antiapoptotic genes, BclxL and Mcl1 and downregulation of proapoptotic molecule-Bad. Differences were considered significant at p< 0.01. Values were expressed as mean ± SEM from six separate experiments. Conclusion: We were able to show that in the absence of one proliferative gene, another sister gene upregulates and takes over the role of uncontrolled cell proliferation. This usually leads to failure of most cancer controltherapies. 


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1706-1706
Author(s):  
Ayana Kon ◽  
Masashi Sanada ◽  
Kenichi Yoshida ◽  
Yasunobu Nagata ◽  
Yuichi Shiraishi ◽  
...  

Abstract Abstract 1706 The recent study of whole-exome sequencing on MDS has revealed frequent and specific pathway mutations involving multiple components of the RNA splicing machinery, including U2AF35, SRSF2, SF3B1 and ZRSR2. The mutually exclusive manner of these mutations among MDS cases also supported that deregulated RNA splicing contributes to the pathogenesis of MDS. Interestingly, the distribution of these splicing pathway mutations shows a substantial difference with regard to disease subtypes. Thus, the SF3B1 mutations are by far the most frequent in RARS and RCMD-RS cases, and the SRSF2 mutations are more prevalent in CMML. SRSF2 is a member of the SR protein family that is commonly characterized by one or two RNA recognition motifs (RRM) and a signature serine/arginine-rich domains (RS domains). The SR proteins interact with other spliceosome components through their RS domains, among which most extensively characterized are SRSF1 (ASF/SF2) and SRSF2 (SC35). Both SR proteins bind a splicing enhancer site within the 3' target exon and also interact with the U2AF, playing an indispensable role in both constitutive and alternative splicing in most cell types. In fact, the knockout of these genes in mice results in embryonic lethality. There is emerging evidence that establishes a connection between the abnormal expression of SR proteins and the development of cancer, mainly as a result of change in the alternative splicing patterns of key transcripts. Increased expression of SR proteins usually correlates with cancer progression, as shown by elevated expression of SR proteins in ovarian cancer and breast cancer. In spite of the similarity in their functions, both proteins are thought to have distinct roles, especially in the pathogenesis of myeloid malignancies, since we found no SRSF1 mutations among 582 cases with myeloid neoplasms. On the other hand, studies have shown that increased expression of SRSF1 transforms immortal rodent fibroblasts and leads to the formation of sarcomas in nude mice, supporting the notion that SRSF1 is a proto-oncogene, whereas SRSF2 does not have transforming activity, indicating a highly specific role of SRSF1 in this type of cancer. Thus, little is known about the biological mechanism by which the SRSF2 mutations are involved in the pathogenesis of MDS, although the mutations at the P95 site are predicted to cause a significant displacement of the RS domain relative to the domain for RNA binding. So to gain an insight into the functional aspect of SRSF2 mutations, we performed sequencing analysis of mRNAs extracted from mutant (P95H) SRSF2-transduced HeLa cells in which expression of the wild-type and mutant SRSF2 were induced by doxycycline. The abnormal splicing in mutant SRSF2-transduced cells was directly demonstrated by evaluating the read counts in different fractions. Next, to investigate functional role of SRSF2 mutant, HeLa cells were transduced with lentivirus constructs expressing either the P95H SRSF2 mutant or wild-type SRSF2, and cell proliferation was examined. After the induction of gene expression, the mutant SRSF2-transduced cells showed reduced cell proliferation. In addition, we transduced P95H SRSF2 constructs into factor-dependent 32D cell lines. The expression of mutant SRSF2 protein resulted in increased apoptosis in the presence of IL-3 and also suppression of cell growth in the presence of G-CSF, which may be related to ineffective hematopoiesis, a common feature of MDS. To further clarify the biological effect of SRSF2 mutants in vivo, a highly purified hematopoietic stem cell population (CD34-c-Kit+ScaI+ Lin-) prepared from C57BL/6 (B6)-Ly5.1 mouse bone marrow was retrovirally transduced with either the mutant or wild-type SRSF2 with EGFP marking. The transduced cells were mixed with whole bone marrow cells from B6-Ly5.1/5.2 F1 mice, transplanted into lethally irradiated B6-Ly5.2 recipients, and we are now monitoring the ability of these transduced cells to reconstitute the hematopoietic system and other hematological phenotypes. Much remains, however, to be unrevealed about the functional link between the abnormal splicing of RNA species and the phenotype of myelodysplasia. Further functional studies should be warranted to understand these mechanisms in detail. In this meeting, we will present the results of our functional studies on the SRSF2 mutations and discuss the pathogenesis of MDS in terms of the alterations of splicing machinery. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 167 (4) ◽  
pp. 371-377 ◽  
Author(s):  
Junhua Zhang ◽  
Xingbo Tian ◽  
Huifang Yin ◽  
Songshu Xiao ◽  
Shuijing Yi ◽  
...  

Abstract Evidence has indicated the associations between thioredoxin-interacting protein (TXNIP) and cancers. However, the role of TXNIP in cervical cancer remains unclear. Hence, this study aims to investigate the role of TXNIP in regulating cervical cancer cell proliferation, migration and invasion. TXNIP expression can be regulated by either MondoA or ChREBP in a cell- or tissue- dependent manner. Thus, we also explored whether TXNIP expression in cervical cancer can be regulated by MondoA or ChREBP. Our results showed that TXNIP expression was decreased in cervical cancer cells (HeLa, SiHa, CaSki, MS751, C-33A). Furthermore, TXNIP overexpression inhibited cell proliferation, migration and invasion in HeLa cells, whereas TXNIP silencing exerted the opposite effect in C-33A cells. Moreover, TXNIP expression could be induced by MondoA, rather than ChREBP in HeLa cells. Additionally, MondoA overexpression inhibited cell proliferation, migration and invasion through upregulating TXNIP in HeLa cells. In summary, TXNIP induced by MondoA, rather than ChREBP, suppresses cervical cancer cell proliferation, migration and invasion. Our findings provide new ideas for the prevention and treatment of cervical cancer.


2020 ◽  
Author(s):  
Lungwani Muungo

TRIM44 has oncogenic roles in various cancers. However, TRIM44 expression andits function in renal cell carcinoma (RCC) are still unknown. Here in this study, weinvestigated the clinical significance of TRIM44 and its biological function in RCC.TRIM44 overexpression was significantly associated with clinical M stage, histologictype (clear cell) and presence of lymphatic invasion (P = .047, P = .005, and P = .028,respectively). Moreover, TRIM44 overexpression was significantly associated withpoor prognosis in terms of cancer-specific survival (P = .019). Gain-of-function andloss-of-function studies using TRIM44 and siTRIM44 transfection showed thatTRIM44 promotes cell proliferation and cell migration in two RCC cell lines, Caki1and 769P. To further investigate the role of TRIM44 in RCC, we performed integratedmicroarray analysis in Caki1 and 769P cells and explored the data in the Oncominedatabase. Interestingly, FRK was identified as a promising candidate target gene ofTRIM44, which was downregulated in RCC compared with normal renal tissues. Wefound that cell proliferation was inhibited by TRIM44 knockdown and then recoveredby siFRK treatment. Taken together, the present study revealed the associationbetween high expression of TRIM44 and poor prognosis in


2019 ◽  
Vol 17 (5) ◽  
pp. 265-275
Author(s):  
Y. Peristiowati ◽  
Y. Puspitasari ◽  
Indasah

This study is aimed at analyzing the anticancer properties of papaya leaf extract, specifically the inhibition of cell proliferation and apoptotic induction through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p53 pathways. Twenty-five mice (Mus musculus), aged 2 months and weighing 20–30 g, was injected with 0.5 mg dexamethasone for 7 days. The mice were then injected intracutaneously with 1 ml of HeLa cells (8 × 106 HeLa cells/microliter). The mice were divided into five groups (5 each): negative control (P1) (5% CMC-Na, sodium carboxymethyl cellulose), treatment II (225 mg/kg BW (body weight) papaya leaves methanol extract), treatment III (450 mg/kg BW), treatment IV (750 mg/kg BW), and treatment PV (2 mg alcohol anticancer drug). Papaya leaf extract treatments were applied for 2 weeks. Then, the tumor tissue was isolated for hematoxylin and eosin staining. Immunohistochemical imaging was used to detect Ki-67, caspase-3, NF-κB, and p53 expression. Further analysis was undertaken using the ImmunoRatio software program. The results indicated that administration of papaya leaf methanol extract significantly increased the expression of NF-κB and p53 at a dose of 450 mg/kg BW. Our results also showed that the mice treated with 450 mg of papaya leaf extract per kg of BW (P3) had the largest increase of caspase-3 expression compared to the negative control group. Papaya leaf ethanol extract decreased the cancer cell proliferation index and increased apoptosis of cancer cells in animal models of cervical cancer; it may also work to increase NF-kB expression and expression of the p53 gene.


Sign in / Sign up

Export Citation Format

Share Document