scholarly journals The Moisture Budget of Tropical Cyclones in HighResMIP Models: Large-Scale Environmental Balance and Sensitivity to Horizontal Resolution

2020 ◽  
Vol 33 (19) ◽  
pp. 8457-8474
Author(s):  
Benoît Vannière ◽  
Malcolm Roberts ◽  
Pier Luigi Vidale ◽  
Kevin Hodges ◽  
Marie-Estelle Demory ◽  
...  

AbstractPrevious studies have shown that the number, intensity, and structure of simulated tropical cyclones (TCs) in climate models get closer to the observations as the horizontal resolution is increased. However, the sensitivity of tropical cyclone precipitation and moisture budget to changes in resolution has received less attention. In this study, we use the five-model ensemble from project PRIMAVERA/HighResMIP to investigate the systematic changes of the water budget of tropical cyclones in a range of horizontal resolutions from 1° to 0.25°. Our results show that, despite a large change in the distribution of TC intensity with resolution, the distribution of precipitation per TC (i.e., averaged in a 5° radial cap) does not change significantly. This result is explained by the fact that low- and high-resolution models represent equally well the large-scale balance that characterizes the moisture budget of TCs, with the radius of the moisture source extending to ~15° from the center of the TC (i.e. well beyond the TC edge). The wind profile is found to converge in the low and high resolutions for radii > 5°, resulting in a moisture flux convergence into the TC of similar magnitude at low and high resolutions. In contrast to precipitation per TC, TC intensity does increase at higher resolution and this is explained by the larger surface latent heat flux near the center of the storm, which leads to an increase in equivalent potential temperature and warmer core anomalies, although this extra latent heat represents a negligible contribution to the overall moisture budget. We discuss the complication arising from the choice of the tracking algorithm when assessing the impact of model resolution.

2020 ◽  
Author(s):  
Benoit Vanniere ◽  
Malcolm Roberts ◽  
Pier Luigi Vidale ◽  
Kevin Hodges ◽  
Marie-Estelle Demory

<p>Previous studies have shown that, the number, intensity and structure of simulated tropical cyclones (TC) in climate models get closer to the observations as the horizontal resolution is increased. However, the sensitivity of tropical cyclone precipitation and moisture budget to changes in resolution has received less attention. In this study, we use the five-model ensemble from project PRIMAVERA/HighResMIP to investigate the systematic changes associated with the water budget of tropical cyclones in a range of horizontal resolutions from 1º to 0.25º. Our results show that despite a large change in the distribution of TC intensity with resolution, the distribution of precipitation per TC does not change significantly. This result is explained by the large scale balance which characterises the moisture budget of TCs, i.e. radii of ~15º a scale that low and high resolution models represent equally well. The wind profile is found to converge between low and high resolutions for radii > 5º, resulting in a moisture flux convergence into the TC with similar magnitude at low and high resolutions. In contrast to precipitation per TC, the larger TC intensity at higher resolution is explained by the larger surface latent heat flux near the center of the storm, which leads to an increase in equivalent potential temperature and warmer core anomalies, despite representing a negligible contribution to the moisture budget. We discuss the complication arising from the choice of the tracking algorithm when assessing the impact of model resolution and the implications of such a constraint on the TC moisture budget in the context of climate change.</p>


2021 ◽  
Author(s):  
Ying Han ◽  
Mengzhuo Zhang ◽  
Zhongfeng Xu ◽  
Weidong Guo

Abstract General circulation model (GCM) biases are one of the important sources of biases and uncertainty in dynamic downscaling–based simulations. The ability of regional climate models to simulate tropical cyclones (TCs) is strongly affected by the ability of GCMs to simulate the large-scale environmental field. Thus, in this work, we employ a recently developed multivariable integrated evaluation method to assess the performance of 33 CMIP6 (phase 6 of the Coupled Model Intercomparison Project) models in simulating multiple fields. The CMIP6 models are quantitatively evaluated against two reanalysis datasets over five ocean areas. The results show that most of the CMIP6 models overestimate the mid-level humidity in almost all tropical oceans. The multi-model ensemble mean overestimates the vertical shear of the horizontal winds in the Northeast Pacific and North Atlantic. An increase in model horizontal resolution appears to be helpful in improving the model simulations. For example, there are 6–8 models with higher resolution among the top 10 models in terms of overall model performance in simulating the climatology and interannual variability of multiple variables. Similarly, there are 7–8 models with lower resolution among the bottom 10 patterns. The model skill varies depending on the region and variable being evaluated. Although no model performs best in all regions and for all variables, some models do show relatively good capability in simulating the large-scale environmental field of TCs. For example, the MPI-ESM1-2-LR, MPI-ESM1-2-HR, and FIO-ESM-2-0 models show relatively good skill in simulating the climatology and interannual variability of the large-scale environmental field in the Northern and Southern Hemispheres.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


2008 ◽  
Vol 80 (2) ◽  
pp. 397-408 ◽  
Author(s):  
David M. Lapola ◽  
Marcos D. Oyama ◽  
Carlos A. Nobre ◽  
Gilvan Sampaio

We developed a new world natural vegetation map at 1 degree horizontal resolution for use in global climate models. We used the Dorman and Sellers vegetation classification with inclusion of a new biome: tropical seasonal forest, which refers to both deciduous and semi-deciduous tropical forests. SSiB biogeophysical parameters values for this new biome type are presented. Under this new vegetation classification we obtained a consensus map between two global natural vegetation maps widely used in climate studies. We found that these two maps assign different biomes in ca. 1/3 of the continental grid points. To obtain a new global natural vegetation map, non-consensus areas were filled according to regional consensus based on more than 100 regional maps available on the internet. To minimize the risk of using poor quality information, the regional maps were obtained from reliable internet sources, and the filling procedure was based on the consensus among several regional maps obtained from independent sources. The new map was designed to reproduce accurately both the large-scale distribution of the main vegetation types (as it builds on two reliable global natural vegetation maps) and the regional details (as it is based on the consensus of regional maps).


2017 ◽  
Author(s):  
Claudia Christine Stephan ◽  
Nicholas P. Klingaman ◽  
Pier Luigi Vidale ◽  
Andrew G. Turner ◽  
Marie-Estelle Demory ◽  
...  

Abstract. Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyze the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ~ 200, 90, and 40 km in the zonal direction at the equator, respectively) are analyzed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China, but improve with finer resolution and coupling. Empirical Orthogonal Teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal-mean timeseries. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.


2008 ◽  
Vol 21 (22) ◽  
pp. 6052-6059 ◽  
Author(s):  
B. Timbal ◽  
P. Hope ◽  
S. Charles

Abstract The consistency between rainfall projections obtained from direct climate model output and statistical downscaling is evaluated. Results are averaged across an area large enough to overcome the difference in spatial scale between these two types of projections and thus make the comparison meaningful. Undertaking the comparison using a suite of state-of-the-art coupled climate models for two forcing scenarios presents a unique opportunity to test whether statistical linkages established between large-scale predictors and local rainfall under current climate remain valid in future climatic conditions. The study focuses on the southwest corner of Western Australia, a region that has experienced recent winter rainfall declines and for which climate models project, with great consistency, further winter rainfall reductions due to global warming. Results show that as a first approximation the magnitude of the modeled rainfall decline in this region is linearly related to the model global warming (a reduction of about 9% per degree), thus linking future rainfall declines to future emission paths. Two statistical downscaling techniques are used to investigate the influence of the choice of technique on projection consistency. In addition, one of the techniques was assessed using different large-scale forcings, to investigate the impact of large-scale predictor selection. Downscaled and direct model projections are consistent across the large number of models and two scenarios considered; that is, there is no tendency for either to be biased; and only a small hint that large rainfall declines are reduced in downscaled projections. Among the two techniques, a nonhomogeneous hidden Markov model provides greater consistency with climate models than an analog approach. Differences were due to the choice of the optimal combination of predictors. Thus statistically downscaled projections require careful choice of large-scale predictors in order to be consistent with physically based rainfall projections. In particular it was noted that a relative humidity moisture predictor, rather than specific humidity, was needed for downscaled projections to be consistent with direct model output projections.


2011 ◽  
Vol 11 (11) ◽  
pp. 30457-30485 ◽  
Author(s):  
P. Groenemeijer ◽  
G. C. Craig

Abstract. The stochastic Plant-Craig scheme for deep convection was implemented in the COSMO mesoscale model and used for ensemble forecasting. Ensembles consisting of 100 48 h forecasts at 7 km horizontal resolution were generated for a 2000 × 2000 km domain covering central Europe. Forecasts were made for seven case studies and characterized by different large-scale meteorological environments. Each 100 member ensemble consisted of 10 groups of 10 members, with each group driven by boundary and initial conditions from a selected member from the global ECMWF Ensemble Prediction System. The precipitation variability within and among these groups of members was computed, and it was found that the relative contribution to the ensemble variance introduced by the stochastic convection scheme was substantial, amounting to as much as 76% of the total variance in the ensemble in one of the studied cases. The impact of the scheme was not confined to the grid scale, and typically contributed 25–50% of the total variance even after the precipitation fields had been smoothed to a resolution of 35 km. The variability of precipitation introduced by the scheme was approximately proportional to the total amount of convection that occurred, while the variability due to large-scale conditions changed from case to case, being highest in cases exhibiting strong mid-tropospheric flow and pronounced meso- to synoptic scale vorticity extrema. The stochastic scheme was thus found to be an important source of variability in precipitation cases of weak large-scale flow lacking strong vorticity extrema, but high convective activity.


2019 ◽  
Author(s):  
Minchao Wu ◽  
Grigory Nikulin ◽  
Erik Kjellström ◽  
Danijel Belušić ◽  
Colin Jones ◽  
...  

Abstract. We investigate the impact of model formulation and horizontal resolution on the ability of Regional Climate Models (RCMs) to simulate precipitation in Africa. Two RCMs – SMHI-RCA4 and HCLIM38-ALADIN are utilized for downscaling the ERA-Interim reanalysis over Africa at four different resolutions: 25, 50, 100 and 200 km. Additionally to the two RCMs, two different configurations of the same RCA4 are used. Contrasting different RCMs, configurations and resolutions it is found that model formulation has the primary control over many aspects of the precipitation climatology in Africa. Patterns of spatial biases in seasonal mean precipitation are mostly defined by model formulation while the magnitude of the biases is controlled by resolution. In a similar way, the phase of the diurnal cycle is completely controlled by model formulation (convection scheme) while its amplitude is a function of resolution. Although higher resolution in many cases leads to smaller biases in the time mean climate, the impact of higher resolution is mixed. An improvement in one region/season (e.g. reduction of dry biases) often corresponds to a deterioration in another region/season (e.g. amplification of wet biases). The experiments confirm a pronounced and well known impact of higher resolution – a more realistic distribution of daily precipitation. Even if the time-mean climate is not always greatly sensitive to resolution, what the time-mean climate is made up of, higher order statistics, is sensitive. Therefore, the realism of the simulated precipitation increases as resolution increases. Our results show that improvements in the ability of RCMs to simulate precipitation in Africa compared to their driving reanalysis in many cases are simply related to model formulation and not necessarily to higher resolution. Such model formulation related improvements are strongly model dependent and in general cannot be considered as an added value of downscaling.


2019 ◽  
Vol 116 (25) ◽  
pp. 12261-12269 ◽  
Author(s):  
William Nordhaus

Concerns about the impact on large-scale earth systems have taken center stage in the scientific and economic analysis of climate change. The present study analyzes the economic impact of a potential disintegration of the Greenland ice sheet (GIS). The study introduces an approach that combines long-run economic growth models, climate models, and reduced-form GIS models. The study demonstrates that social cost–benefit analysis and damage-limiting strategies can be usefully extended to illuminate issues with major long-term consequences, as well as concerns such as potential tipping points, irreversibility, and hysteresis. A key finding is that, under a wide range of assumptions, the risk of GIS disintegration makes a small contribution to the optimal stringency of current policy or to the overall social cost of climate change. It finds that the cost of GIS disintegration adds less than 5% to the social cost of carbon (SCC) under alternative discount rates and estimates of the GIS dynamics.


2019 ◽  
Vol 19 (21) ◽  
pp. 13681-13699 ◽  
Author(s):  
Marleen Braun ◽  
Jens-Uwe Grooß ◽  
Wolfgang Woiwode ◽  
Sören Johansson ◽  
Michael Höpfner ◽  
...  

Abstract. The Arctic winter 2015–2016 was characterized by exceptionally low stratospheric temperatures, favouring the formation of polar stratospheric clouds (PSCs) from mid-December until the end of February down to low stratospheric altitudes. Observations by GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) on HALO (High Altitude and LOng range research aircraft) during the PGS (POLSTRACC–GW-LCYCLE II–SALSA) campaign from December 2015 to March 2016 allow the investigation of the influence of denitrification on the lowermost stratosphere (LMS) with a high spatial resolution. Two-dimensional vertical cross sections of nitric acid (HNO3) along the flight track and tracer–tracer correlations derived from the GLORIA observations document detailed pictures of wide-spread nitrification of the Arctic LMS during the course of an entire winter. GLORIA observations show large-scale structures and local fine structures with enhanced absolute HNO3 volume mixing ratios reaching up to 11 ppbv at altitudes of 13 km in January and nitrified filaments persisting until the middle of March. Narrow coherent structures tilted with altitude of enhanced HNO3, observed in mid-January, are interpreted as regions recently nitrified by sublimating HNO3-containing particles. Overall, extensive nitrification of the LMS between 5.0 and 7.0 ppbv at potential temperature levels between 350 and 380 K is estimated. The GLORIA observations are compared with CLaMS (Chemical Lagrangian Model of the Stratosphere) simulations. The fundamental structures observed by GLORIA are well reproduced, but differences in the fine structures are diagnosed. Further, CLaMS predominantly underestimates the spatial extent of HNO3 maxima derived from the GLORIA observations as well as the overall nitrification of the LMS. Sensitivity simulations with CLaMS including (i) enhanced sedimentation rates in case of ice supersaturation (to resemble ice nucleation on nitric acid trihydrate (NAT)), (ii) a global temperature offset, (iii) modified growth rates (to resemble aspherical particles with larger surfaces) and (iv) temperature fluctuations (to resemble the impact of small-scale mountain waves) slightly improved the agreement with the GLORIA observations of individual flights. However, no parameter could be isolated which resulted in a general improvement for all flights. Still, the sensitivity simulations suggest that details of particle microphysics play a significant role for simulated LMS nitrification in January, while air subsidence, transport and mixing become increasingly important for the simulated HNO3 distributions towards the end of the winter.


Sign in / Sign up

Export Citation Format

Share Document