scholarly journals Molecular characterization of xanthan gum producing Xanthomonas Campestris isolated from dark rot spotted leaves in Keffi, Nasarawa State, Nigeria

2022 ◽  
Vol 2 (1) ◽  
pp. 01-08
Author(s):  
Makwin Danladi Makut ◽  
Kenneth Kit Madaiki ◽  
Obumneme Smart Obiekezie

Background: Despite the wide application of Xanthan gum, its commercial production remains a global challenge. In recent years, considerable research has been carried out using agro-industrial wastes, which are renewable and abundantly available to produce value-added products. The present study was set out for molecular identification of Xanthomonas campestris from leaves of four different plants with indications of dark rot spots and evaluation of their xanthan gum production capacity. Methods: Twenty-five (25) samples of leaves from four different plants with indications of dark rot spots were collected from the study area and isolated for Xanthomonas campestris following standard microbiological methods. Cultural, morphological and biochemical tests were conducted to confirm the organism. Results: The results revealed that of the total 100 samples taken, 6 leaves (24%) were infected with Xanthomonas species in mint, 3(12%) were infected in mango, 1(4%) were infected in rice and 2(8%) were infected in pepper. Further molecular identification of the isolates was carried out to reveal Xanthomonas campestris pv. vesicatoria strain 85-10 and Xanthomonas perforans strain 91-118. These were further used for the production of xanthan gum using sugar cane molasses substrates extracted from sugar cane, which was used as fermentation medium for the production. Isolates from plants varying ability in Xanthan gum production, with the mint plant having the highest Xanthan gum production (0.10 ± 0.02 to 0.9 ± 0.00 g/l). Conclusion: The present study confirmed the high xanthan gum production capacity of Xanthomonas campestris from dark rot spots containing mint leaves and should be considered during local and industrial production of the xanthan gum

Agro Ekonomi ◽  
2016 ◽  
Vol 18 (1) ◽  
pp. 33
Author(s):  
Hanifah Erma Ratnasari Usada ◽  
Dwidjono Hadi Darwanto

This research aims to: (1) measure thefeasibility rate of agroindustry of ethanol, (2) thefactors that affect valueadded agro-processing of sugar cane molasses into ethanol, (3) thefactors that affect the profit of ethanol agroindustry, (4) the relationship or the mutual influence between the value added to the feasibility of covering the profit, profitability, and break eventpoint (BEP). The research was conducted in Sukoharjo regency in theperiod of November 2009 until October 2010. The results of this research indicate that: (1) the average gain per unit of marketing during the period November 2009 to October 2010 amounting to Rp. 220,311,318.00. and the level of profitability (net B/C ratio) for each agro-processing of molasses into ethanol is 53.91% so it can be seen that the ethanol agroindustry is feasible to develop and deliver benefits for business owners. (2) Factors that significantly influence the value added are: the production capacity, the amount of raw materials, and the amount of fuel. (3) Factors that significantly influence the profit are: the price of sugar cane molasses as the main raw materials, auxiliary input price of caustic soda, and wage labor. (4) The existence of a positive relationship between the value added to profits and profitability, while the relationship between value-added is inverseproportional to the break evenpoint.Penelitian ini bertujuan untuk mengetahui: (1) kelayakan agroindustri keeil etanol, (2) faktor-faktor yang mempengaruhi niJai tambah agroindustri pengolahan tetes tebu menjadi etanol, (3) faktor-faktor yang mempengaruhi keuntungan usaha agroindustri keeil etanol, (4) hubungan atau pengaruh timbal balik antara nilai tambah dengan kelayakan yang meliputi keuntungan, profitabilitas, dan titik impas (BEP). Penelitian dilaksanakan di Kabupaten Sukoharjo pada periode usaha Nopember 2009 sampai dengan Oktober 2010. Hasil penelitian menunjukkan bahwa: (1) Agroindustri etanollayak untuk dikembangkan dan memberikan keuntungan bagi pemilik usahanya. Rata-rata keuntungan per usaha selama periode Nopember 2009 sampai dengan Oktober 2010 sebesar Rp. 220.311.318,00 dan tingkat profitabilitas per usaha agroindustri pengolahan tetes tebu menjadi etanol adalah 53,91%. (2) Faktor-faktor yang berpengaruh signifikan terhadap nilai tambah adalah kapasitas produksi yang dihasilkan, jumlah bahan baku, dan jumlah bahan bakar. (3) Faktor-faktor yang berpengaruh signifikan terhadap keuntungan adalah harga tetes tebu sebagai bahan baku utama, harga input penolong soda api, dan upah tenaga kerja. (4) Adanya hubungan positif antara nilai tambah dengan keuntungan dan profitabilitas, sementara itu hubungan antara nilai tambah berbanding terbalik terhadap titik impas.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3052
Author(s):  
Diego Cardoza ◽  
Inmaculada Romero ◽  
Teresa Martínez ◽  
Encarnación Ruiz ◽  
Francisco J. Gallego ◽  
...  

A biorefinery integrated process based on lignocellulosic feedstock is especially interesting in rural areas with a high density of agricultural and agro-industrial wastes, which is the case for olive crop areas and their associated industries. In the region of Andalusia, in the south of Spain, the provinces of Jaén, Córdoba and Seville accumulate more than 70% of the olive wastes generated in Spain. Therefore, the valorisation of these wastes is a matter of interest from both an environmental and a social point of view. The olive biorefinery involves a multi-product process from different raw materials: olive leaves, exhausted olive pomace, olive stones and olive tree pruning residues. Biorefinery processes associated with these wastes would allow their valorisation to produce bioenergy and high value-added renewable products. In this work, using geographic information system tools, the biomass from olive crop fields, mills and olive pomace-extracting industries, where these wastes are generated, was determined and quantified in the study area. In addition, the vulnerability of the territory was evaluated through an environmental and territorial analysis that allowed for the determination of the reception capacity of the study area. Then, information layers corresponding to the availability of the four biomass wastes, and layers corresponding to the environmental fragility of the study area were overlapped and they resulted in an overall map. This made it possible to identify the best areas for the implementation of the biorefineries based on olive-derived biomass. Finally, as an example, three zones were selected for this purpose. These locations corresponded to low fragility areas with a high availability of biomass (more than 300,000 tons/year) in a 30 km radius, which would ensure the biomass supply.


Author(s):  
Sebastian Ponce ◽  
Stefanie Wesinger ◽  
Daniela Ona ◽  
Daniela Almeida Streitwieser ◽  
Jakob Albert

AbstractThe selective oxidative conversion of seven representative fully characterized biomasses recovered as secondary feedstocks from the agroindustry is reported. The reaction system, known as the “OxFA process,” involves a homogeneous polyoxometalate catalyst (H8PV5Mo7O40), gaseous oxygen, p-toluene sulfonic acid, and water as solvent. It took place at 20 bar and 90 °C and transformed agro-industrial wastes, such as coffee husks, cocoa husks, palm rachis, fiber and nuts, sugarcane bagasse, and rice husks into biogenic formic acid, acetic acid, and CO2 as sole products. Even though all samples were transformed; remarkably, the reaction obtains up to 64, and 55% combined yield of formic and acetic acid for coffee and cocoa husks as raw material within 24 h, respectively. In addition to the role of the catalysts and additive for promoting the reaction, the influence of biomass components (hemicellulose, cellulose and lignin) into biogenic formic acid formation has been also demonstrated. Thus, these results are of major interest for the application of novel oxidation techniques under real recovered biomass for producing value-added products. Graphical abstract


2010 ◽  
Vol 14 ◽  
pp. 139-146
Author(s):  
Van De Jong ◽  
B.E. Braithwaite ◽  
T.L. Roush ◽  
A. Stewart ◽  
J.G. Hampton

New Zealand produces approximately 5,500 tonnes of brassica seed per year, two thirds of which, valued at $13M, is exported. Black rot caused by Xanthomonas campestris pv. campestris is a common disease of brassicas, and while crop losses are not extensive in New Zealand, internationally total crop losses have been reported. Seeds are the primary source of inoculum and the ease with which this inoculum spreads means that even small traces can cause severe epidemics. Genetic resistance to black rot is a complex trait which makes breeding for resistance in brassicas challenging. The effectiveness of chemical and cultural practices is variable. Biological control with natural antagonistic microbes may provide a more effective means of controlling black rot and other pests and diseases, and create opportunities for increasing the export value of brassica seed. Current cultural practices and the potential for biological control for the management of black rot are reviewed. Keywords: biocontrol, Brassicaceae, crucifer


1987 ◽  
Vol 169 (6) ◽  
pp. 2854-2861 ◽  
Author(s):  
N E Harding ◽  
J M Cleary ◽  
D K Cabañas ◽  
I G Rosen ◽  
K S Kang

2021 ◽  
Vol 9 (2) ◽  
pp. 24-30

Streptokinase is a fibrinolytic enzyme and a product of β-hemolytic Streptococci strains. This enzyme is used as a medication to break down clots in some cases of heart disease. Streptococcus equisimilis, a species of group C Streptococci, is widely used for the production of streptokinase by fermentation technology. In this study, the sugarcane bagasse fermentation medium was optimized for metal ions (KH2PO4, MgSO4.7H2O, CaCO3 and NaHCO3) at various levels to attain the maximal production of streptokinase. Sugarcane bagasse was used due to its profuse availability and as an ideal substrate for microbial processes for the manufacturing of value-added products. The results showed that maximal streptokinase production was found at 0.04% KH2PO4, 0.04% MgSO4.7H2O, 0.15% NaHCO3 and 0.04% CaCO3. Finally, the optimized medium resulted in 84.75 U/mg specific activity and 74.5% recovery. The purification process was carried out simultaneously using ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration. Finally, a purified sample of streptokinase was run on SDS-PAGE and resolute 47 kDa molecular weight. The use of β-hemolytic Streptococci to obtain streptokinase is not free from health risks and is related to anaphylaxis. This study provides a way forward for the cost-effective ways to obtain streptokinase for the treatment of thrombosis.


Fuel ◽  
2021 ◽  
pp. 122421
Author(s):  
Elias Ramos de Souza ◽  
Pamela Dias Rodrigues ◽  
Igor C.F. Sampaio ◽  
Edgard Bacic ◽  
Pedro J.L. Crugeira ◽  
...  

2018 ◽  
Vol 5 (4) ◽  
pp. 93 ◽  
Author(s):  
Rajeev Ravindran ◽  
Shady Hassan ◽  
Gwilym Williams ◽  
Amit Jaiswal

Agro-industrial waste is highly nutritious in nature and facilitates microbial growth. Most agricultural wastes are lignocellulosic in nature; a large fraction of it is composed of carbohydrates. Agricultural residues can thus be used for the production of various value-added products, such as industrially important enzymes. Agro-industrial wastes, such as sugar cane bagasse, corn cob and rice bran, have been widely investigated via different fermentation strategies for the production of enzymes. Solid-state fermentation holds much potential compared with submerged fermentation methods for the utilization of agro-based wastes for enzyme production. This is because the physical–chemical nature of many lignocellulosic substrates naturally lends itself to solid phase culture, and thereby represents a means to reap the acknowledged potential of this fermentation method. Recent studies have shown that pretreatment technologies can greatly enhance enzyme yields by several fold. This article gives an overview of how agricultural waste can be productively harnessed as a raw material for fermentation. Furthermore, a detailed analysis of studies conducted in the production of different commercially important enzymes using lignocellulosic food waste has been provided.


2020 ◽  
Vol 104 (20) ◽  
pp. 8567-8594 ◽  
Author(s):  
Martina Cappelletti ◽  
Alessandro Presentato ◽  
Elena Piacenza ◽  
Andrea Firrincieli ◽  
Raymond J. Turner ◽  
...  

Abstract Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production of compounds with environmental, industrial, and medical relevance such as biosurfactants, bioflocculants, carotenoids, triacylglycerols, polyhydroxyalkanoate, siderophores, antimicrobials, and metal-based nanostructures. These biosynthetic capacities can also be exploited to obtain high value-added products from low-cost substrates (industrial wastes and contaminants), offering the possibility to efficiently recover valuable resources and providing possible waste disposal solutions. Rhodococcus spp. strains have also recently been pointed out as a source of novel bioactive molecules highlighting the need to extend the knowledge on biosynthetic capacities of members of this genus and their potential utilization in the framework of bioeconomy. Key points • Rhodococcus possesses promising biosynthetic and bioconversion capacities. • Rhodococcus bioconversion capacities can provide waste disposal solutions. • Rhodococcus bioproducts have environmental, industrial, and medical relevance.


Sign in / Sign up

Export Citation Format

Share Document