scholarly journals RhoGDI1-Cdc42 Signaling Is Required for PDGF-BB-Induced Phenotypic Transformation of Vascular Smooth Muscle Cells and Neointima Formation

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1169
Author(s):  
Yan Qi ◽  
Xiuying Liang ◽  
Haijing Guan ◽  
Jingwen Sun ◽  
Wenjuan Yao

RhoGTPase is involved in PDGF-BB-mediated VSMC phenotypic modulation. RhoGDIs are key factors in regulating RhoGTPase activation. In the present study, we investigated the regulatory effect of RhoGDI1 on the activation of RhoGTPase in VSMC transformation and neointima formation. Western blot and co-immunoprecipitation assays showed that the PDGF receptor inhibition by crenolanib promoted RhoGDI1 polyubiquitination and degradation. Inhibition of RhoGDI1 degradation via MG132 reversed the decrease in VSMC phenotypic transformation. In addition, RhoGDI1 knockdown significantly inhibited VSMC phenotypic transformation and neointima formation in vitro and in vivo. These results suggest that PDGF-BB promotes RhoGDI1 stability via the PDGF receptor and induces the VSMC synthetic phenotype. The co-immunoprecipitation assay showed that PDGF-BB enhanced the interaction of RhoGDI1 with Cdc42 and promoted the activation of Cdc42; these enhancements were blocked by crenolanib and RhoGDI1 knockdown. Moreover, RhoGDI1 knockdown and crenolanib pretreatment prevented the localization of Cdc42 to the plasma membrane (PM) to activate and improve the accumulation of Cdc42 on endoplasmic reticulum (ER). Furthermore, Cdc42 inhibition or suppression significantly reduced VSMC phenotypic transformation and neointima formation in vitro and in vivo. This study revealed the novel mechanism by which RhoGDI1 stability promotes the RhoGDI1-Cdc42 interaction and Cdc42 activation, thereby affecting VSMC phenotypic transformation and neointima formation.

2010 ◽  
Vol 189 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Manuela Quintavalle ◽  
Leonardo Elia ◽  
Gianluigi Condorelli ◽  
Sara A. Courtneidge

Smooth muscle cell (SMC) plasticity plays an important role during development and in vascular pathologies such as atherosclerosis and restenosis. It was recently shown that down-regulation of microRNA (miR)-143 and -145, which are coexpressed from a single promoter, regulates the switch from contractile to synthetic phenotype, allowing SMCs to migrate and proliferate. We show in this study that loss of miR-143/145 in vitro and in vivo results in the formation of podosomes, which are actin-rich membrane protrusions involved in the migration of several cell types, including SMCs. We further show that platelet-derived growth factor (PDGF) mediates podosome formation in SMCs through the regulation of miR-143/145 expression via a pathway involving Src and p53. Moreover, we identify key podosome regulators as targets of miR-143 (PDGF receptor α and protein kinase C ε) and miR-145 (fascin). Thus, dysregulation of the miR-143 and -145 genes is causally involved in the aberrant SMC plasticity encountered during vascular disease, in part through the up-regulation of an autoregulatory loop that promotes podosome formation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Baohui Yuan ◽  
He Liu ◽  
Xiaoliang Dong ◽  
Xiaohua Pan ◽  
Xun Sun ◽  
...  

Neointima formation is a serious complication caused by mechanical trauma to the vessel. (R)-4,6-dimethoxy-3-(4-methoxy phenyl)-2,3-dihydro-1H-indanone [(R)-TML 104] is a synthesized analog of the natural product resveratrol sesquiterpenes (±)-isopaucifloral F. The present study aimed to investigate the effects and underlying mechanisms of (R)-TML104 on neointima formation. Our results showed that (R)-TML104 prevented neointima formation based on a carotid artery injury model in mice. Furthermore, (R)-TML104 inhibited platelet-derived growth factor-BB (PDGF-BB)-induced vascular smooth muscle cells (VSMC) phenotypic transformation, evidenced by increased α-smooth muscle actin, reduced VSMC proliferation, and migration. Simultaneously, (R)-TML104 upregulated sirtuin-1 (SIRT1) expression in VSMC. We further uncovered that SIRT1 expression is critical for the inhibitory effects of (R)-TML104 on PDGF-BB-induced VSMC phenotypic transformation in vitro and injury-induced neointima formation in vivo. Finally, (R)-TML104-upregulated SIRT1 inhibited PDGF-BB-induced VSMC phenotypic transformation by downregulating nicotinamide adenine dinucleotide phosphate oxidase 4 expression via decreasing nuclear factor-κB acetylation. Taken together, these results revealed that (R)-TML104 upregulates SIRT1 expression and ameliorates neointima formation. Therefore, the application of (R)-TML104 may constitute an effective strategy to ameliorate neointima formation.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Saikat Bhattacharya ◽  
Michaella J. Levy ◽  
Ning Zhang ◽  
Hua Li ◽  
Laurence Florens ◽  
...  

AbstractHeterogeneous ribonucleoproteins (hnRNPs) are RNA binding molecules that are involved in key processes such as RNA splicing and transcription. One such hnRNP protein, hnRNP L, regulates alternative splicing (AS) by binding to pre-mRNA transcripts. However, it is unclear what factors contribute to hnRNP L-regulated AS events. Using proteomic approaches, we identified several key factors that co-purify with hnRNP L. We demonstrate that one such factor, the histone methyltransferase SETD2, specifically interacts with hnRNP L in vitro and in vivo. This interaction occurs through a previously uncharacterized domain in SETD2, the SETD2-hnRNP Interaction (SHI) domain, the deletion of which, leads to a reduced H3K36me3 deposition. Functionally, SETD2 regulates a subset of hnRNP L-targeted AS events. Our findings demonstrate that SETD2, by interacting with Pol II as well as hnRNP L, can mediate the crosstalk between the transcription and the splicing machinery.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Zhicheng Zheng ◽  
Peiyu Liang ◽  
Baohua Hou ◽  
Xin Lu ◽  
Qianwen Ma ◽  
...  

Abstract Background Accumulating evidence suggests that disease-associated microglia (DAM), a recently discovered subset of microglia, plays a protective role in neurological diseases. Targeting DAM phenotypic transformation may provide new therapeutic options. However, the relationship between DAM and epilepsy remains unknown. Methods Analysis of public RNA-sequencing data revealed predisposing factors (such as dipeptidyl peptidase IV; DPP4) for epilepsy related to DAM conversion. Anti-epileptic effect was assessed by electroencephalogram recordings and immunohistochemistry in a kainic acid (KA)-induced mouse model of epilepsy. The phenotype, morphology and function of microglia were assessed by qPCR, western blotting and microscopic imaging. Results Our results demonstrated that DPP4 participated in DAM conversion and epilepsy. The treatment of sitagliptin (a DPP4 inhibitor) attenuated KA-induced epilepsy and promoted the expression of DAM markers (Itgax and Axl) in both mouse epilepsy model in vivo and microglial inflammatory model in vitro. With sitagliptin treatment, microglial cells did not display an inflammatory activation state (enlarged cell bodies). Furthermore, these microglia exhibited complicated intersections, longer processes and wider coverage of parenchyma. In addition, sitagliptin reduced the activation of NF-κB signaling pathway and inhibited the expression of iNOS, IL-1β, IL-6 and the proinflammatory DAM subset gene CD44. Conclusion The present results highlight that the DPP4 inhibitor sitagliptin can attenuate epilepsy and promote DAM phenotypic transformation. These DAM exhibit unique morphological features, greater migration ability and better surveillance capability. The possible underlying mechanism is that sitagliptin can reduce the activation of NF-κB signaling pathway and suppress the inflammatory response mediated by microglia. Thus, we propose DPP4 may act as an attractive direction for DAM research and a potential therapeutic target for epilepsy.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Olanrewaju Ayodeji Durojaye ◽  
Nkwachukwu Oziamara Okoro ◽  
Arome Solomon Odiba

Abstract Background The novel coronavirus SARS-CoV-2 is currently a global threat to health and economies. Therapeutics and vaccines are in rapid development; however, none of these therapeutics are considered as absolute cure, and the potential to mutate makes it necessary to find therapeutics that target a highly conserved regions of the viral structure. Results In this study, we characterized an essential but poorly understood coronavirus accessory X4 protein, a core and stable component of the SARS-CoV family. Sequence analysis shows a conserved ~ 90% identity between the SARS-CoV-2 and previously characterized X4 protein in the database. QMEAN Z score of the model protein shows a value of around 0.5, within the acceptable range 0–1. A MolProbity score of 2.96 was obtained for the model protein and indicates a good quality model. The model has Ramachandran values of φ = − 57o and ψ = − 47o for α-helices and values of φ = − 130o and ψ = + 140o for twisted sheets. Conclusions The protein data obtained from this study provides robust information for further in vitro and in vivo experiment, targeted at devising therapeutics against the virus. Phylogenetic analysis further supports previous evidence that the SARS-CoV-2 is positioned with the SL-CoVZC45, BtRs-BetaCoV/YN2018B and the RS4231 Bat SARS-like corona viruses.


2021 ◽  
Vol 26 (3) ◽  
pp. 349-361
Author(s):  
Napoleon-Nikolaos Vrettos ◽  
Peng Wang ◽  
Yan Zhou ◽  
Clive J. Roberts ◽  
Jinyi Xu ◽  
...  

2012 ◽  
Vol 32 (6) ◽  
pp. 559-566 ◽  
Author(s):  
Yan Xu ◽  
Feng Zhi ◽  
Guangming Xu ◽  
Xiaolei Tang ◽  
Sheng Lu ◽  
...  

MDR (multidrug-resistance) represents a major obstacle to successful cancer chemotherapy and is usually accomplished by overexpression of P-gp (P-glycoprotein). Much effort has been devoted to developing P-gp inhibitors to modulate MDR. However, none of the inhibitors on the market have been successful. 1416 [1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino)propane hydrochloride (phenoprolamine hydrochloride)] is a new VER (verapamil) analogue with a higher IC50 for blocking calcium channel currents than VER. In the present paper, we examined the inhibition effect of 1416 on P-gp both in vitro and in vivo. 1416 significantly enhanced cytotoxicity of VBL (vinblastine) in P-gp-overexpressed human multidrug-resistant K562/ADM (adriamycin) and KBV cells, but had no such effect on the parent K562 and KB cells. The MDR-modulating function of 1416 was further confirmed by increasing intracellular Rh123 (rhodanmine123) content in MDR cells. Human K562/ADM xenograft-nude mice model verified that 1416 potentiates the antitumour activity of VBL in vivo. RT-PCR (reverse transcriptase-PCR) and FACS analysis demonstrated that the expression of MDR1/P-gp was not affected by 1416 treatment. All these observations suggest that 1416 could be a promising agent for overcoming MDR in cancer chemotherapy.


2012 ◽  
Vol 63 (4) ◽  
pp. 606-612 ◽  
Author(s):  
Arthur L. Nikkel ◽  
Brenda Martino ◽  
Stella Markosyan ◽  
Jill-Desiree Brederson ◽  
Rodrigo Medeiros ◽  
...  

2014 ◽  
Vol 59 (2) ◽  
pp. 1341-1343 ◽  
Author(s):  
Nathan P. Wiederhold ◽  
Laura K. Najvar ◽  
Annette W. Fothergill ◽  
Rosie Bocanegra ◽  
Marcos Olivo ◽  
...  

ABSTRACTWe evaluated thein vitroandin vivoactivities of the investigational arylamidine T-2307 against echinocandin-resistantCandida albicans. T-2307 demonstrated potentin vitroactivity, and daily subcutaneous doses between 0.75 and 6 mg/kg of body weight significantly improved survival and reduced fungal burden compared to placebo control and caspofungin (10 mg/kg/day) in mice with invasive candidiasis caused by an echinocandin-resistant strain. Thus, T-2307 may have potential use in the treatment of echinocandin-resistantC. albicansinfections.


Sign in / Sign up

Export Citation Format

Share Document