Non-Reciprocal Bandpass Filter with Tunable Center Frequency and Constant Fractional Bandwidth

Author(s):  
Minahil Shirazi ◽  
David Chatzichristodoulou ◽  
Abdul Quddious ◽  
Nosherwan Shoaib ◽  
Dimitra Psychogiou ◽  
...  
2021 ◽  
Vol 36 (7) ◽  
pp. 865-871
Author(s):  
Jin Shi ◽  
Jiancheng Dong ◽  
Kai Xu ◽  
Lingyan Zhang

A novel miniaturized wideband bandpass filter (BPF) using capacitor-loaded microstrip coupled line is proposed. The capacitors are loaded in parallel and series to the coupled line, which makes the filter just require one one-eighth wavelength coupled line and achieve filtering response with multiple transmission poles (TPs) and transmission zeros (TZs). Compared with the state-of-the-art microstrip wideband BPFs, the proposed filter has the advantages of compact size and simple structure. A prototype centered at 1.47 GHz with the 3-dB fractional bandwidth of 86.5% is demonstrated, which exhibits the compact size of 0.003λ2 g (λg is the guided wavelength at the center frequency) and the minimum insertion loss of 0.37 dB.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Mohammad Reza Khawary ◽  
Vahid Nayyeri ◽  
Seyed Mohammad Hashemi ◽  
Mohammad Soleimani

This paper presents a novel ultracompact narrow bandpass filter with high selectivity. The proposed filter is composed of cascading two basic cells. Each cell is basically a microstrip line loaded with a quasiplanar resonator and series gaps which can be fabricated using a standard multilayer printed circuit board technology. The structure is analyzed through an equivalent circuit and full-wave simulations. The simulation results are compared with experimental measurements demonstrating a good agreement between them. The measurement indicates that the realized bandpass filter at the center frequency of 1 GHz has a fractional bandwidth of 2.2%. Most importantly, in comparison with other similar recent works, it is shown that the proposed filter has the smallest size.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 300 ◽  
Author(s):  
Musab Hameed ◽  
Gaobiao Xiao ◽  
Ali Najam ◽  
Lina Qiu ◽  
Tayyab Hameed

This paper proposes a method for designing a quadruple-mode wideband bandpass filter using off-centered perturbed metallic cylinders in a rectangular waveguide cavity with compact size and improved out-of-band rejection. Two off-centered perturbation cylinders were placed at the bottom of the rectangular waveguide cavity along with a pair of perpendicularly-fed coaxial lines, which excited four quasi-transverse magnetic (TM) modes to realize the desired passband. The height of the waveguide cavity and the shape of the perturbation cylinders were exploited to achieve an all quasi-TM modes filter with good out-of-band rejection and sharp skirt selectivity. The proposed filter operates at 2.93 GHz center frequency with 38% wide fractional bandwidth (FBW). The proposed filter is fabricated using aluminum. The measured and simulated results are in good agreement with each other.


2021 ◽  
Vol 5 (1) ◽  
pp. 21-31
Author(s):  
B. A. Belyaev ◽  
◽  
A. M. Serzhantov ◽  
An. A. Leksikov ◽  
Ya. F. Bal’va ◽  
...  

A new miniature monolithic bandpass filter, which can be manufactured using multilayer standard all-PCB technology, is presented. Each resonator in the filter is formed by metal spirals of the left and right wist inserted into each other, in which one pair of adjacent ends is grounded, and the other is free. Spiral inductors have the form of identical rectangular frames and are designed on dielectric substrates, located on a multilayer structure strictly under each other with alternating turns of the left and right spirals. The design of the filter based on such multilayer double-spiral resonators is both small in size, and highly selective, which is proved by the measured characteristics of the fourth order filter fabricated at seven dielectric layers of RO4350B material. The filter has the central frequency of the passband f0 = 60 MHz, and the fractional bandwidth Δf / f0 = 18%, while the size of the device is of the device are only 34 × 16.5 × 4.3 mm3 (0.007λ0 × 0.003λ0 × 0.001λ0, where λ0 is the wavelength at the center frequency f0). The filter has a wide stopband, which extends up to the frequency of 16f0 at a level of –38 dB.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1932
Author(s):  
Jian Chen ◽  
Zhi-Ji Wang ◽  
Bao-Hua Zhu ◽  
Eun-Seong Kim ◽  
Nam-Young Kim

This article presents a compact quad flat no-lead (QFN)-packaged second-order bandpass filter (BPF) with intertwined inductors, a dendritic capacitor, and four air-bridge structures, which was fabricated on a gallium arsenide (GaAs) substrate by integrated passive device (IPD) technology. Air-bridge structures were introduced into an approximate octagonal outer metal track to provide a miniaturized chip size of 0.021 × 0.021 λ0 (0.8 × 0.8 mm2) for the BPF. The QFN-packaged GaAs-based bandpass filter was used to protect the device from moisture and achieve good thermal and electrical performances. An equivalent circuit was modeled to analyze the BPF. A description of the manufacturing process is presented to elucidate the physical structure of the IPD-based BPF. Measurements were performed on the proposed single band BPF using a center frequency of 2.21 GHz (return loss of 26.45 dB) and a 3-dB fractional bandwidth (FBW) of 71.94% (insertion loss of 0.38 dB). The transmission zero is located at the 6.38 GHz with a restraint of 30.55 dB. The manufactured IPD-based BPF can play an excellent role in various S-band applications, such as a repeater, satellite communication, and radar, owing to its miniaturized chip size and high performance.


Frequenz ◽  
2014 ◽  
Vol 68 (9-10) ◽  
Author(s):  
Zhiyuan Zhao ◽  
Jiang Chen ◽  
Lin Yang ◽  
Kunhe Chen

AbstractA novel three-pole tunable bandpass filter using mixed combline resonators with a center frequency band of 0.9–1.8 GHz is proposed in this paper. The varactor-tuned filter is designed on a Rogers substrate with


Author(s):  
Б.А. Беляев ◽  
А.М. Сержантов ◽  
Ан.А. Лексиков ◽  
Я.Ф. Бальва ◽  
Р.Г. Галеев

A new monolithic design of a miniature bandpass filter has been developed for the multilayer PCB technology fabrication. The use of multi-conductor stripline resonators in the design provides not only miniaturization, but also high selectivity of the device, which is demonstrated on a prototype filter of the fourth order. The center frequency of the passband of the manufactured filter is f0 = 546 MHz, the fractional bandwidth is Δf / f0 = 25%, the insertion loss is 0.8 dB. The filter has an extended high-frequency stop band, which at a level of ‒30 dB extends up to a frequency of 10f0. The dimensions of the filter are 15.0×12.0×4.3 mm3 (0.027λ0×0.021λ0 ×0.007λ0, where λ0 is the wavelength in vacuum at the frequency f0), and its mass is only 1.8 g. The filter's characteristics and ease of construction for surface mounting prove its high prospects.


2019 ◽  
Vol 12 (2) ◽  
pp. 109-115 ◽  
Author(s):  
Qing Liu ◽  
Dongfang Zhou ◽  
Dewei Zhang ◽  
Chenge Bian ◽  
Yi Zhang

AbstractThis paper reports a novel fourth-order quasi-elliptic bandpass filter (BPF) based on capacitive-loaded eighth-mode substrate integrated waveguide (CLEMSIW) cavities. The CLEMSIW cavity is constructed by the conventional eighth-mode SIW with two dielectric substrates and three metal layers; a metal via is employed to connect the middle and bottom metal layers. The middle metal layer achieves a large loading capacitance to shift the resonance frequency. The proposed filter is designed in a quadruple scheme, and two controllable finite-transmission zeros can be realized. For the demonstration, a prototype with a center frequency of 1 GHz and a fractional bandwidth of 10% was designed, fabricated, and measured. The measured results agree well with simulated ones. The proposed filter has advantages of ultra-compact size, high selectivity, and good stopband performances.


2018 ◽  
Vol 10 (4) ◽  
pp. 405-411 ◽  
Author(s):  
Salif N. Dembele ◽  
Ting Zhang ◽  
Jingfu Bao ◽  
Denis Bukuru

AbstractA dual closed-loop stepped impedance resonator (DCLSIR) is investigated and used in designing a compact microstrip bandpass filter (BPF). The proposed DCLSIR is symmetrical; as a result, the symmetric characteristics of the resonator have been used. The design equations are derived and used to support the circuit design. The center frequency, position of transmission zeros, and fractional bandwidth (FBW) are easily tuned by changing the physical dimensions of the resonator. Three transmission zeros are generated to improve the performance in the upper stopband. A DCLSIR prototype BPF is fabricated with a center frequency of 9.3 GHz, and evaluated to validate the design concept. The measured FBW is 9.25%, the insertion loss is 1.58 dB, and the return loss is over 17 dB. The measurement results agree well with the simulation results.


2013 ◽  
Vol 456 ◽  
pp. 616-619
Author(s):  
Xin Kun Tang ◽  
Ya Lin Guan ◽  
Lin Bin Wan

Based on the above analysis, the methodology of synthesizing bandpass filter by utilizing the novel structure is further proposed, which is then adopted to design a bandpass filter with the center frequency located at 6.45 GHz and the fractional bandwidth of 85%.


Sign in / Sign up

Export Citation Format

Share Document