scholarly journals Design and Measurement of a 0.67 THz Biased Sub-Harmonic Mixer

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 161
Author(s):  
Guangyu Ji ◽  
Dehai Zhang ◽  
Jin Meng ◽  
Siyu Liu ◽  
Changfei Yao

To effectively reduce the requirement of Local Oscillator (LO) power, this paper presents the design and measurement of a biased sub-harmonic mixer working at the center frequency of 0.67 THz in hybrid integration. Two discrete Schottky diodes were placed across the LO waveguide in anti-series configuration on a 50 μm thick quartz-glass substrate, and chip capacitors were not required. At the driven of 3 mW@335 GHz and 0.35 V, the mixer had a minimum measured Signal Side-Band (SSB) conversion loss of 15.3 dB at the frequency of 667 GHz. The typical conversion loss is 18.2 dB in the band of 650 GHz to 690 GHz.

2016 ◽  
Vol 9 (5) ◽  
pp. 965-976
Author(s):  
Rasmus S. Michaelsen ◽  
Tom K. Johansen ◽  
Kjeld M. Tamborg ◽  
Vitaliy Zhurbenko ◽  
Lei Yan

In this paper, we propose a double balanced mixer with a tunable Marchand balun. The circuit is designed in a SiGe BiCMOS process using Schottky diodes. The tunability of the Marchand balun is used to enhance critical parameters for double balanced mixers. The local oscillator-IF isolation can be changed from –51 to –60.5 dB by tuning. Similarly, the IIP2can be improved from 41.3 to 48.7 dBm at 11 GHz, while the input referred 1-dB compression point is kept constant at 8 dBm. The tuning have no influence on conversion loss, which remains at 8.8 dB at a LO power level of 11 dBm at the center frequency of 11 GHz. The mixer has a 3 dB bandwidth from 8 to 13 GHz, covering the entire X-band. The full mixer has a size of 2050 μm × 1000 μm.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2112
Author(s):  
José M. Pérez-Escudero ◽  
Carlos Quemada ◽  
Ramón Gonzalo ◽  
Iñigo Ederra

In this paper the design and experimental characterization of a combined doubler-subharmonic mixer based on Schottky diodes which uses a 75 GHz MMIC based local oscillator is presented. This solution integrates in the same substrate the doubler and the mixer, which share the same metallic packaging with the local oscillator. The prototype has been fabricated and measured. For characterization, the Y-Factor technique has been used and the prototype yields a best conversion loss and equivalent noise temperature of 11 dB and 1976 K, respectively, at 305 GHz. This performance is close to the state of the art, and shows the potential of this approach, which allows a significant reduction in terms of size and volume.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 186 ◽  
Author(s):  
Guangyu Ji ◽  
Dehai Zhang ◽  
Jin Meng ◽  
Siyu Liu ◽  
Changfei Yao

This paper proposes a novel sub-harmonic mixing topology. Based on the proposed topology and the precise three-dimensional electromagnetic model of the Schottky barrier diode; a novel 183 GHz solid-state sub-harmonic mixer is designed and measured. By adding a compact low-pass filter near the ground of the mixer’s circuit, the effect on the mixer’s RF performance of the random error of the conductive adhesive in assembling is effectively decreased. The test results show that the optimal single-sideband conversion loss of the mixer is 8.1dB@183GHz when the local oscillator signal is 4mw@91GHz. In the RF bandwidth from 173 GHz to 191 GHz, the single-sideband conversion loss is less than −10.6 dB. At the same time, the RF port return loss is less than 9.8 dB.


2021 ◽  
Vol 11 (16) ◽  
pp. 7238
Author(s):  
José M. Pérez-Escudero ◽  
Carlos Quemada ◽  
Ramón Gonzalo ◽  
Iñigo Ederra

In this paper the design and experimental validation of a fourth-harmonic mixer based on Schottky diodes working around 300 GHz is presented. The main novelty of this work consists in the integration of an MMIC-based local oscillator, working around 75 GHz, and a mixer in the same metallic block housing. A prototype has been characterized using the Y-Factor method and yields a best measured conversion loss and an equivalent noise temperature of 14 dB and 9600 K, respectively. This performance is comparable to the state-of-the-art for this type of mixer.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 234
Author(s):  
Bo Zhang ◽  
Yong Zhang ◽  
Liucheng Pan ◽  
Yu Li ◽  
Jianhang Cui ◽  
...  

In this paper, a 560 GHz terahertz sub-harmonic mixer using a new half-global design method is reported. This method combines the advantages of the subdivision design method and the global design method, and greatly enhances the abilities of the optimization of matching variables while retaining the portability of the unit circuit. When the local oscillator (LO) frequency was fixed with 3 mW power at 280 GHz, average up-conversion double sideband (DSB) conversion loss of 8 dB with intermediate frequency (IF) power of −5 dBm was achieved.


2013 ◽  
Vol 753 ◽  
pp. 505-509
Author(s):  
Yuichi Sato ◽  
Toshifumi Suzuki ◽  
Hiroyuki Mogami ◽  
Fumito Otake ◽  
Hirotoshi Hatori ◽  
...  

Solid phase growth of thin films of copper (Cu), aluminum (Al) and zinc oxide (ZnO) on single crystalline sapphire and quartz glass substrates were tried by heat-treatments and their crystallization conditions were investigated. ZnO thin films relatively easily recrystallized even when they were deposited on the amorphous quartz glass substrate. On the other hand, Cu and Al thin films hardly recrystallized when they were deposited on the quartz glass substrate. The metal thin films could be recrystallized at only extremely narrow windows of the heat-treatment conditions when they were deposited on the single crystalline sapphire substrate. The window of the solid phase heteroepitaxial growth condition of the Al film was wider than that of the Cu film.


2021 ◽  
Vol 14 (02) ◽  
pp. 2151012
Author(s):  
Natangue Heita Shafudah ◽  
Hiroki Nagai ◽  
Mitsunobu Sato

Cubic or tetragonal zirconia thin films of transparent and 100 nm thickness were selectively formed on a quartz glass substrate by heat-treating the molecular precursor films involving Zr(IV) complexes of nitrilotriacetic acid, at 500[Formula: see text]C in air for 1 h. A precursor solution was prepared by a reaction of the ligand and zirconium tetrabutoxide in alcohol under the presence of butylamine. By the addition of H2O2 or H2O into the solution, the spin-coated precursor films were converted to cubic zirconia thin films by the abovementioned procedure. Further, the identical phase was produced also in the case of the electro-sprayed precursor film which was formed by an addition of H2O2 into the solution. On the other hand, the tetragonal zirconia thin film was obtained from a precursor film formed by using a solution dissolving the original Zr(IV) complex of the ligand, without H2O2 nor H2O. The crystal structure of all thin films was determined by using both the X-ray diffraction (XRD) patterns and Raman spectra. Thus, the zirconia thin films of both crystals could be facilely and selectively obtained with no use of hetero-metal ion stabilizers. The XPS spectra of the thin films show that the O/Zr ratio of the cubic phase is 1.37 and slightly larger than tetragonal one (1.29), and also demonstrate that the nitrogen atoms, which may contribute to stabilize these metastable phases at room temperature, of about 5−7 atomic% was remained in the resultant thin films. The adhesion strengths of cubic zirconia thin film onto the quartz glass substrate was 68 MPa and larger than that of tetragonal one, when the precursor films were formed via a spin coating process. The optical and surface properties of the thin films were also examined in relation to the crystal systems.


Author(s):  
Jie Chen ◽  
Jun Wang

Hexagon-shaped Zn oxide nano-pole films with terraces and steps have been successfully fabricated by means of a combined approach involving sol-gel process, high-temperature heat treatment, and the hydrothermal method. The surface chemistry and morphological features of the films were characterized by means of x-ray photoelectron spectroscopy and scanning electron microcopy. All the diffraction peaks in x-ray diffraction pattern match with those of the hexagonal wurtzite phase of Zn oxide. Transmittance measurements show that the optical transmittance of the sample synthesized at 520°C on quartz glass substrate is the highest, reaching about 65% in the visible-light region. Based on the detailed structural characterization and the nucleation-growth kinetics, we find that the whole crystallization process of wurtzite Zn oxide nano-poles includes nanocatalysis and layer-by-layer growth mechanism. The present study provides an important understanding of the growth mechanism for nano-pole synthesis of Zn oxide and related materials.


Sign in / Sign up

Export Citation Format

Share Document