scholarly journals GABAergic signaling by cells of the immune system: more the rule than the exception

Author(s):  
Amol K. Bhandage ◽  
Antonio Barragan

AbstractGamma-aminobutyric acid (GABA) is best known as an essential neurotransmitter in the evolved central nervous system (CNS) of vertebrates. However, GABA antedates the development of the CNS as a bioactive molecule in metabolism and stress-coupled responses of prokaryotes, invertebrates and plants. Here, we focus on the emerging findings of GABA signaling in the mammalian immune system. Recent reports show that mononuclear phagocytes and lymphocytes, for instance dendritic cells, microglia, T cells and NK cells, express a GABAergic signaling machinery. Mounting evidence shows that GABA receptor signaling impacts central immune functions, such as cell migration, cytokine secretion, immune cell activation and cytotoxic responses. Furthermore, the GABAergic signaling machinery of leukocytes is implicated in responses to microbial infection and is co-opted by protozoan parasites for colonization of the host. Peripheral GABA signaling is also implicated in inflammatory conditions and diseases, such as type 1 diabetes, rheumatoid arthritis and cancer cell metastasis. Adding to its role in neurotransmission, growing evidence shows that the non-proteinogenic amino acid GABA acts as an intercellular signaling molecule in the immune system and, as an interspecies signaling molecule in host–microbe interactions. Altogether, the data raise the assumption of conserved GABA signaling in a broad range of mammalian cells and diversification of function in the immune system.

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 109
Author(s):  
Rafael Franco ◽  
Irene Reyes-Resina ◽  
Gemma Navarro

Dopamine is derived from an amino acid, phenylalanine, which must be obtained through the diet. Dopamine, known primarily to be a neurotransmitter involved in almost any higher executive action, acts through five types of G-protein-coupled receptors. Dopamine has been studied extensively for its neuronal handling, synaptic actions, and in relation to Parkinson’s disease. However, dopamine receptors can be found extra-synaptically and, in addition, they are not only expressed in neurons, but in many types of mammalian cells, inside and outside the central nervous system (CNS). Recent studies show a dopamine link between the gut and the CNS; the mechanisms are unknown, but they probably require cells to act as mediators and the involvement of the immune system. In fact, dopamine receptors are expressed in almost any cell of the immune system where dopamine regulates various processes, such as antigen presentation, T-cell activation, and inflammation. This likely immune cell-mediated linkage opens up a new perspective for the use of dopamine-related drugs, i.e., agonist–antagonist–allosteric modulators of dopamine receptors, in a variety of diseases.


2018 ◽  
Vol 20 (1) ◽  
pp. 124 ◽  
Author(s):  
Apoorva Iyer ◽  
Svetlana Chapoval

Neuroimmune semaphorin 4A (Sema4A), a member of semaphorin family of transmembrane and secreted proteins, is an important regulator of neuronal and immune functions. In the nervous system, Sema4A primarily regulates the functional activity of neurons serving as an axon guidance molecule. In the immune system, Sema4A regulates immune cell activation and function, instructing a fine tuning of the immune response. Recent studies have shown a dysregulation of Sema4A expression in several types of cancer such as hepatocellular carcinoma, colorectal, and breast cancers. Cancers have been associated with abnormal angiogenesis. The function of Sema4A in angiogenesis and cancer is not defined. Recent studies have demonstrated Sema4A expression and function in endothelial cells. However, the results of these studies are controversial as they report either pro- or anti-angiogenic Sema4A effects depending on the experimental settings. In this mini-review, we discuss these findings as well as our data on Sema4A regulation of inflammation and angiogenesis, which both are important pathologic processes underlining tumorigenesis and tumor metastasis. Understanding the role of Sema4A in those processes may guide the development of improved therapeutic treatments for cancer.


mBio ◽  
2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Yung-Chi Chang ◽  
Satoshi Uchiyama ◽  
Ajit Varki ◽  
Victor Nizet

ABSTRACTCell surface expression of sialic acid has been reported to decrease during immune cell activation, but the significance and regulation of this phenomenon are still being investigated. The major human bacterial pathogenStreptococcus pneumoniaecauses pneumonia, sepsis and meningitis, often accompanied by strong inflammatory responses.S. pneumoniaeexpresses a sialidase (NanA) that contributes to mucosal colonization, platelet clearance, and blood-brain barrier penetration. Using wild-type and isogenic NanA-deficient mutant strains, we showed thatS. pneumoniaeNanA can desialylate the surface of human THP-1 monocytes, leading to increased ERK phosphorylation, NF-κB activation, and proinflammatory cytokine release.S. pneumoniaeNanA expression also stimulates interleukin-8 release and extracellular trap formation from human neutrophils. A mechanistic contribution of unmasking of inhibitory Siglec-5 fromcissialic acid interactions to the proinflammatory effect of NanA is suggested by decreased SHP-2 recruitment to the Siglec-5 intracellular domain and RNA interference studies. Finally, NanA increased production of proinflammatory cytokines in a murine intranasal challenge model ofS. pneumoniaepneumonia.IMPORTANCESialic acids decorate the surface of all mammalian cells and play important roles in physiology, development, and evolution. Siglecs are sialic acid-binding receptors on the surface of immune cells, many of which engage incisinteractions with host sialoglycan ligands and dampen inflammatory responses through transduction of inhibitory signals. Recently, certain bacterial pathogens have been shown to suppress leukocyte innate immune responses by molecular mimicry of host sialic acid structures and engagement of inhibitory Siglecs. Our present work shows that the converse can be true, i.e., that a microbial sialic acid-cleaving enzyme can induce proinflammatory responses, which are in part mediated by unmasking of an inhibitory Siglec. We conclude that host leukocytes are poised to detect and respond to microbial sialidase activity with exaggerated inflammatory responses, which could be beneficial or detrimental to the host depending on the site, stage and magnitude of infection.


2009 ◽  
Vol 1209 ◽  
Author(s):  
Keyue Shen ◽  
Michael C Milone ◽  
Michael L. Dustin ◽  
Lance Cameron Kam

AbstractT lymphocytes are a key regulatory component of the adaptive immune system. Understanding how the micro- and nano-scale details of the extracellular environment influence T cell activation may have wide impact on the use of T cells for therapeutic purposes. In this article, we examine how the micro- and nano-scale presentation of ligands to cell surface receptors, including microscale organization and nanoscale mobility, influences the activation of T cells. We extend these studies to include the role of cell-generated forces, and the rigidity of the microenvironment, on T cell activation. These approaches enable delivery of defined signals to T cells, a step toward understanding the cell-cell communication in the immune system, and developing micro/nano- and material- engineered systems for tailoring immune responses for adoptive T cell therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mari Ichinose ◽  
Nobumi Suzuki ◽  
Tongtong Wang ◽  
Josephine A. Wright ◽  
Tamsin R. M. Lannagan ◽  
...  

AbstractThe intestinal stroma provides an important microenvironment for immune cell activation. The perturbation of this tightly regulated process can lead to excessive inflammation. We know that upregulated Toll-like receptor 4 (TLR4) in the intestinal epithelium plays a key role in the inflammatory condition of preterm infants, such as necrotizing enterocolitis (NEC). However, the surrounding stromal contribution to excessive inflammation in the pre-term setting awaits careful dissection. Ex vivo co-culture of embryonic day 14.5 (E14.5) or adult murine intestinal stromal cells with exogenous monocytes was undertaken. We also performed mRNAseq analysis of embryonic and adult stromal cells treated with vehicle control or lipopolysaccharide (LPS), followed by pathway and network analyses of differentially regulated transcripts. Cell characteristics were compared using flow cytometry and pHrodo red phagocytic stain, candidate gene analysis was performed via siRNA knockdown and gene expression measured by qPCR and ELISA. Embryonic stromal cells promote the differentiation of co-cultured monocytes to CD11bhighCD11chigh mononuclear phagocytes, that in turn express decreased levels of CD103. Global mRNAseq analysis of stromal cells following LPS stimulation identified TLR signaling components as the most differentially expressed transcripts in the immature compared to adult setting. We show that CD14 expressed by CD11b+CD45+ embryonic stromal cells is a key inducer of TLR mediated inflammatory cytokine production and phagocytic activity of monocyte derived cells. We utilise transcriptomic analyses and functional ex vivo modelling to improve our understanding of unique molecular cues provided by the immature intestinal stroma.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S33-S33
Author(s):  
Monica Viladomiu ◽  
Maeva Metz ◽  
Svetlana Lima ◽  
Chun-Jun Guo ◽  
Kenneth Simpson ◽  
...  

Abstract While the molecular mechanisms by which the microbiome modulates mucosal immunity in Crohn’s disease (CD) are still largely unknown, recent data highlight the involvement of specific diet- and bacterial-derived metabolites in the regulation of intestinal immune cell activation and differentiation. We have recently shown that Adherent-Invasive E.coli (AIEC), which are enriched in CD patients, are sufficient to induce intestinal Th17 cells. Although AIEC lack pathogenic factors including type III secretion systems, many CD-derived isolates express virulence-associated metabolic enzymes including propanediol dehydratase (PduC), which enables AIEC to use fucose-derived propanediol as an alternate carbon source in the gut. We found that pduC is enriched in the microbiome and among E. coli genomes in CD patients compared to healthy controls. With fucosylated oligosaccharides on the surface of intestinal epithelial cells, we hypothesized that this propanediol utilization pathway provides AIEC a competitive advantage for epithelial cell adherence and intestinal immune cell activation. To evaluate the physiologic contribution of pduC to mucosal Th17 induction, we generated a pduC-deficient (ΔpduC) mutant of a CD-derived, AIEC isolate. Deletion of pduC resulted in reduced inflammatory Th17 cells and attenuated weight loss following T cell transfer colitis. Using genetic mouse models, we found that CX3CR1+ mononuclear phagocytes are required for this AIEC-mediated Th17 induction and IL-10 is required to restrain pduC-dependent dextran sodium sulfate (DSS)-induced colitis. Using a catalytically-inactive mutant, we determined that PduC metabolic activity was required for this immune phenotype. Cell-free supernatants from WT AIEC (but not the isogenic, pduC-deficient clone) promoted ex vivo Th17 cell polarization and metabolomics analysis (LC-MS) of these supernatants defined PduC-dependent metabolites capable of promoting Th17 polarization. These studies reveal a link between AIEC microbial metabolism and inflammatory Th17 cells with the potential to serve as a therapeutic target in the treatment of Crohn’s disease.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jisun So ◽  
Albert K. Tai ◽  
Alice H. Lichtenstein ◽  
Dayong Wu ◽  
Stefania Lamon-Fava

AbstractSexual dimorphism in the immune system is evidenced by a higher prevalence of autoimmune diseases in women and higher susceptibility to infectious diseases in men. However, the molecular basis of these sex-based differences is not fully understood. We have characterized the transcriptome profiles of peripheral blood monocytes from males and postmenopausal females with chronic low-grade inflammation. We identified 41 sexually differentially expressed genes [adjusted p value (FDR) < 0.1], including genes involved in immune cell activation (e.g., CEACAM1, FCGR2B, and SLAMF7) and antigen presentation (e.g., AIM2, CD1E, and UBA1) with a higher expression in females than males. Moreover, signaling pathways of immune or inflammatory responses, including interferon (IFN) signaling [z-score = 2.45, -log(p) = 3.88], were found to be more upregulated in female versus male monocytes, based on a set of genes exhibiting sex-biased expression (p < 0.03). The contribution of IFN signaling to the sexual transcriptional differences was further confirmed by direct comparisons of the monocyte sex-biased genes with IFN signature genes (ISGs) that were previously curated in mouse macrophages. ISGs showed a greater overlap with female-biased genes than male-biased genes and a higher overall expression in female than male monocytes, particularly for the genes of antiviral and inflammatory responses to IFN. Given the role of IFN in immune defense and autoimmunity, our results suggest that sexual dimorphism in immune functions may be associated with more priming of innate immune pathways in female than male monocytes. These findings highlight the role of sex on the human immune transcriptome.


Author(s):  
Apoorva Iyer ◽  
Svetlana P. Chapoval

Neuroimmune semaphorin 4A (Sema4A), a member of semaphorin family of transmembrane and secreted proteins, is an important regulator of neuronal and immune functions. In the nervous system, Sema4A primarily regulates the functional activity of neurons serving as an axon guidance molecule. In the immune system, Sema4A regulates immune cell activation and function granting a fine tuning of immune response. Recent studies have shown a dysregulation of Sema4A expression in several types of cancer such as hepatocellular carcinoma, colorectal and breast cancers. Cancers have been associated with abnormal angiogenesis. The function of Sema4A in angiogenesis and cancer is not defined. Recent studies have demonstrated Sema4A expression and function in endothelial cells. However, the results of these studies are controversial as they report either pro &ndash; or anti-angiogenic Sema4A effects depending on the experimental settings. In this mini-review, we discuss these findings as well as our data on Sema4A regulation of inflammation and angiogenesis, which both are important pathologic processes underlining tumorigenesis and tumor metastasis. Understanding the role of Sema4A in those processes may guide the development of improved therapeutic treatments for cancer.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2795-2795
Author(s):  
Rina M Mbofung ◽  
Alan M Williams ◽  
Ken Hayama ◽  
Yijia Pan ◽  
Brian Groff ◽  
...  

Abstract Allogeneic off-the-shelf cell therapies offer distinct advantages over conventional autologous cell therapies in terms of scaled manufacturing, on-demand availability and optimization of cellular starting material. A unique consideration in the use of allogeneic cell therapies is the potential for immune cell-mediated recognition of the allogeneic cell product by the patient's immune system. CAR T-cell therapies are commonly combined with conditioning chemotherapies that suppress a patient's immune system, creating a suitable window of activity to elicit clinical response. However, protracted lympho-conditioning also affects immune reconstitution and can negatively impact the rate of infection. Alternative approaches to prevent allorejection may therefore help to enhance the efficacy of the therapy while preserving the immune system of the patient. Elimination of cell-surface human leukocyte antigen (HLA) molecule expression by genetic knockout (KO) has long been known to abrogate T-cell reactivity. However, loss of class I HLA elicits NK cell-mediated recognition and clearance, and therefore must be combined with other immune-modulating strategies to limit host NK cell reactivity. Allogeneic models combining class I HLA deletion with NK cell inhibitory molecules, such as HLA-E and CD47, have been shown to abrogate NK cell reactivity in mouse models. However, HLA-E is the canonical activator of NKG2C, a dominant activating receptor found on human NK cells. Likewise, the expression of signal regulatory protein alpha (SIRPα), the major interactor for CD47, is mostly restricted to macrophages and dendritic cells and not human NK cells, and the observed effects of this immune-modulating strategy in the mouse system may only offer partial or incomplete immune evasion in the human system. In this study, we provide details of a bona fide off-the-shelf strategy where iPSC-derived NK (iNK) cell therapy is multiplexed engineered with a novel combination of immune-evasion modalities; beta 2 microgobulin (B2M) KO to prevent CD8 T-cell mediated rejection; class II transactivator (CIITA) KO to prevent CD4 T-cell mediated rejection; and CD38 KO to enable combination with anti-CD38 mAbs, which can be administered to deplete host alloreactive lymphocytes, including both NK and T cells. In vitro mixed lymphocyte reaction (MLR) data demonstrated that upon co-culture with allogeneic PBMCs, B2M KO iNK cells stimulated less T-cell activation than their B2M sufficient counterparts as evidenced by reduced CD38, 41BB, and CD25 levels on T cells. Additionally, B2M KO iNK cells impaired T-cell expansion over the duration of co-culture, resulting in a 50% decrease in expansion at the peak of the control response. However, B2M KO iNK cells were depleted over time, suggesting activation of an NK cell "missing self" response by the peripheral blood NK (pbNK) cells. In contrast, when the assay was performed in the presence of anti-CD38 mAb, depletion of B2M KO iNK cells was blocked, and instead B2M KO iNK cell numbers increased by 3.5-fold, comparable to the iNK cell numbers found in the control arm (cultured without allogeneic PBMCs). Interestingly, pbNK cell numbers decreased, while T-cell activation and expansion remained lower than in B2M-sufficient MLR cultures. Furthermore, when B2M KO iNK cells were cocultured with tumor cells and anti-CD38 mAb in vitro, ADCC was comparable to the B2M sufficient cells, indicating uncompromised effector function. Finally, in vivo studies suggested that co-administration of anti-CD38 mAbs can significantly enhance the persistence of B2M KO iNK cells in the presence of allogeneic pbNK cells as seen in the spleen and bone marrow (Figure 1). Together these data demonstrate that the combination of triple-gene knockout of CD38, B2M and CIITA with a CD38-targeting mAb is an effective strategy to avoid host immune rejection, and highlights the potential advantages of multiplexed engineered iPSCs to facilitate large-scale manufacture of complex engineered, off-the-shelf cellular therapies. Figure 1 Figure 1. Disclosures Williams: Fate Therapeutics: Current Employment. Malmberg: Merck: Research Funding; Vycellix: Consultancy; Fate Therapeutics: Consultancy, Research Funding. Lee: Fate Therapeutics, Inc.: Current Employment. Bjordahl: Fate Therapeutics: Current Employment. Valamehr: Fate Therapeutics, Inc.: Current Employment.


Author(s):  
Sabrina Geisberger ◽  
Hendrik Bartolomaeus ◽  
Patrick Neubert ◽  
Ralf Willebrand ◽  
Christin Zasada ◽  
...  

Background: Dietary high salt (HS) is a leading risk factor for mortality and morbidity. Serum sodium transiently increases postprandially, but can also accumulate at sites of inflammation affecting differentiation and function of innate and adaptive immune cells. Here, we focus on how changes in extracellular sodium, mimicking alterations in the circulation and tissues, affect the early metabolic, transcriptional and functional adaption of human and murine mononuclear phagocytes (MNP). Methods: Using Seahorse technology, pulsed stable isotope-resolved metabolomics and enzyme activity assays we characterize the central carbon metabolism and mitochondrial function of human and murine MNP under HS in vitro . HS as well as pharmacologic uncoupling of the electron transport chain (ETC) under normal salt (NS) is used to analyze mitochondrial function on immune cell activation and function (as determined by E.coli killing and CD4 + T cell migration capacity). In two independent clinical studies we analyze the impact of a HS diet over two weeks (NCT02509962) and short-term salt challenge by a single meal (NCT04175249) on mitochondrial function of human monocytes in vivo . Results: Extracellular sodium was taken up into the intracellular compartment followed by the inhibition of mitochondrial respiration in murine and human macrophages (MΦ). Mechanistically, HS reduces mitochondrial membrane potential, ETC complex II activity, oxygen consumption, and ATP production independently of the polarization status of MΦ. Subsequently, cell activation is altered with improved bactericidal function in HS-treated M1-like MΦ and diminished CD4+ T cell migration in HS-treated M2-like MΦ. Pharmacologic uncoupling of the ETC under NS phenocopies HS-induced transcriptional changes and bactericidal function of human and murine MNP. Clinically, also in vivo rise in plasma sodium concentration within the physiological range reversibly reduces mitochondrial function in human monocytes. In both, a 14-day and single meal HS challenge, healthy volunteers displayed a plasma sodium increase of ̃x = 2 mM and ̃x = 2.3 mM , respectively, that correlated with decreased monocytic mitochondrial oxygen consumption. Conclusions: Our data identify the disturbance of mitochondrial respiration as the initial step by which HS mechanistically influences immune cell function. While these functional changes might help to resolve bacterial infections, a shift towards pro-inflammation could accelerate inflammatory CVD.


Sign in / Sign up

Export Citation Format

Share Document