scholarly journals Pressure Sensor Placement in Water Supply Network Based on Graph Neural Network Clustering Method

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 150
Author(s):  
Sen Peng ◽  
Jing Cheng ◽  
Xingqi Wu ◽  
Xu Fang ◽  
Qing Wu

Pressure sensor placement is critical to system safety and operation optimization of water supply networks (WSNs). The majority of existing studies focuses on sensitivity or burst identification ability of monitoring systems based on certain specific operating conditions of WSNs, while nodal connectivity or long-term hydraulic fluctuation is not fully considered and analyzed. A new method of pressure sensor placement is proposed in this paper based on Graph Neural Networks. The method mainly consists of two steps: monitoring partition establishment and sensor placement. (1) Structural Deep Clustering Network algorithm is used for clustering analysis with the integration of complicated topological and hydraulic characteristics, and a WSN is divided into several monitoring partitions. (2) Then, sensor placement is carried out based on burst identification analysis, a quantitative metric named “indicator tensor” is developed to calculate hydraulic characteristics in time series, and the node with the maximum average partition perception rate is selected as the sensor in each monitoring partition. The results showed that the proposed method achieved a better monitoring scheme with more balanced distribution of sensors and higher coverage rate for pipe burst detection. This paper offers a new robust framework, which can be easily applied in the decision-making process of monitoring system establishment.

2020 ◽  
Vol 26 (3) ◽  
pp. 126-130
Author(s):  
Krasimir Kalev

AbstractA schematic diagram of a hydraulic drive system is provided to stabilize the speed of the working body by compensating for volumetric losses in the hydraulic motor. The diagram shows the inclusion of an originally developed self-adjusting choke whose flow rate in the inlet pressure change range tends to reverse - with increasing pressure the flow through it decreases. Dependent on the hydraulic characteristics of the hydraulic motor and the specific operating conditions.


2021 ◽  
pp. 66-71
Author(s):  
NIKOLAY V. TSUGLENOK ◽  

The authors have determined the conditions for the eff ective use of modern electrifi ed circular sprinklers in the central part of Russia. Their designs are chosen depending on the agrotechnical requirements for irrigation, including the change in the diameter of the water distribution pipeline. However, when the diameter of the pipeline changes, the load on the electric drive of the support trolleys of the sprinkler changes too, which leads to a corresponding change in energy consumption. In turn, this also changes the load of the water supply pump. The paper sets the task of determining the optimal change in the diameter of pipelines according to the criterion of minimum energy consumption, taking into account a number of assumptions. The authors have analyzed the relationship between the change in the load on the electric drive of the sprinkler support trolley and the change in the diameter of one sprinkler section pipeline. It has been found that a decrease in the diameter by 27% (for example, the transition of the diameter of 219 mm to the diameter of 159 mm) leads to a decrease in the load on the electric drive by 38%. However, this also leads to an increase in the head loss in the water supply pump motor and, respectively, to an increase in the load and energy consumption by 0.8…3.8%. The eff ect is initially obvious, but the power of the electric motor of the water supply pump is 10…25 times higher than that of the electric motor of the sprinkler support trolley. Based on the similarity coeffi cients of the irrigation components (water supply and water distribution), the relationship beteween the total energy consumption and the change in the diameter of the water distribution pipeline has been obtained. By diff erentiating the obtained function, the dependence of the value of the optimal diameter for specifi c operating conditions is also obtained. Graphs of the relationship between energy consumption and the change in diameter have been determined, taking into account some restrictions: pump supply, static pressure, and the number of the sprinkler sections.


2017 ◽  
Vol 21 ◽  
pp. 474-481
Author(s):  
Nicuşor Baroiu ◽  
Virgil Gabriel Teodor ◽  
Florin Iftode

The paper describes the method that can be used to monitoring of a water feeding system of a civil building and its subsystems, using a graphic interface of a soft-ware pack – SCADA (Supervisory Control and data Acquisition), WinCC Flexible. The effective adjustment of the pressure of the water feeding system implies using specific elements: sensors, execution elements, programmable automatons and monitoring devices. In the paper, also is analysed the situation in which three centrifugal pumps are utilized as execution elements, a pressure sensor – to measure the pressure of the water feeding system of the consumer, three sensors that detect the presence of water in each well and a Siemens programmable automaton, from the SIMATIC S7-300 series, which controls the process and a PC for the acquisition of data and for monitoring. Thus, it presents a schematic system operating water supply, logic operation sequence control, protection, signage and display alarms


2018 ◽  
Vol 39 ◽  
pp. 04003 ◽  
Author(s):  
Aleksandr V. Alekseev

The article deals with the issues of increasing the reliability and quality of water supply systems operation on the basis of modern methods and software complexes for the analysis and development of hydraulic conditions. Against the backdrop of the analysis of the literature on the problem of reliability, the relevance and insufficiency of attention to maintaining the required level of reliability at the stage of water supply systems operation are revealed. The main factors that affect on operational reliability are considered. These factors are largely associated with the competent organization of operating conditions of water supply systems. A brief description of the «Angara-WS» computer program for solving the problems of analyzing and developing of hydraulic conditions, as well as the experience of its practical application, is given. A special feature of this complex is its universality, the possibility of multilevel representation of models, the execution of one-and multi-level calculations, integration into a common information space of the enterprise, automation of the processes of mode analysis, accumulation and analysis of damage statistics.


2018 ◽  
Author(s):  
Lei Gao ◽  
Yunho Hwang ◽  
Gyeong Sung Kim

Globally, about 10% of the world population does not have access to enough fresh water. In many hot-and-dry coastal regions and islands, the desalination of seawater might be the only practical option to have a fresh water supply. Therefore, low-cost desalination system is critical for freshwater demands. To address this issue, a desalination system consisting of solar photovoltaic (PV) and mechanical vapor compression subsystem is proposed in this study. The entire desalination system was modeled and designed to produce 10,000 m3 of fresh water per day at the coast of San Francisco, California. Key components such as water vapor compressor, solar PV panel, and three-stream heat recovery unit were designed, and their performances were analyzed. The effects of design variables and operating conditions on the system performance were investigated through a parametric study. Finally, an economic analysis was conducted and compared with current desalination technologies. The analysis results show that the specific power consumption of desalination system can reach 14.4 kWh/m3 when the evaporation temperature is 70°C. It is found that the evaporating temperature has a great influence on the heat pump system efficiency and evaporator design. The levelized cost of the proposed system is $0.76 per m3 of fresh water which is lower than current grid-powered vapor compression desalination system and other thermal desalination systems. The proposed solar PV driven desalination improves thermoeconomics of desalination system by applying low-lift operating condition to the vapor compression cycle so that it can contribute to solving the fresh water supply challenges.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Weixuan Jiao ◽  
Li Cheng ◽  
Di Zhang ◽  
Bowen Zhang ◽  
Yeping Su ◽  
...  

As an important overcurrent component in a waterjet propulsion system, the inlet passage is used to connect the propulsion pump and the bottom of the propulsion ship. The anticavitation, vibration, and noise performance of the waterjet propulsion pump are significantly affected by the hydraulic performance of the inlet passage. The hydraulic performance of the inlet passage directly affects the overall performance of the waterjet propulsion system, thus the design and optimization method of the inlet passage is an important part of the hydraulic optimization of the waterjet propulsion system. In this study, the hydraulic characteristics of the inlet passage in the waterjet propulsion system with different flow parameters and geometric parameters were studied by a combination of numerical simulation and experimental verification. The model test was used to verify the hydraulic characteristics of the waterjet propulsion system, and the results show that the numerical results are in good agreement with the test results. The numerical results are reliable. The hydraulic performance of the inlet passage is significantly affected by the inlet velocity ratio. There is a certain correlation between the hydraulic performance of the inlet passage and ship speed, and the hydraulic performance of the inlet passage is limited by ship speed. The geometric parameters of the best optimization case are as follows: the inflow dip angle α is 35°, the length L is 6.38D0, and the upper lip angle is 4°. The optimal operating conditions are the conditions of IVR 0.69–0.87.


2006 ◽  
Vol 6 (3) ◽  
pp. 89-95
Author(s):  
Jungsoo Mun ◽  
Sungwon Park ◽  
Mooyoung Han

The removal efficiency of the dissolved air flotation (DAF) process to separate particles from water and wastewater depends on the size and zeta potential of bubbles and particles, the solution and operating conditions, hydraulic characteristics, etc. The effects of aluminium ions and turbulent flow-produced when air-saturated water was spouted into the reactor in the DAF process, on removal and, particle behaviour were on investigated. When bubble size was similar to particle size (10–50 μm), the maximum removal efficiency was 92% in a Kaolin solution of 10−3 M Al3 +  without pre-treatment for flocculation process, and, as time passed, the floc size was observed to increase at a pH of 8, which was the condition of high removal efficiency as seen through image analysis. When the air-saturated water was spouted into the reactor, the size of particle at p.z.c. (point of zero charge) seemed to increase to form a floc due to collision effects caused by turbulent flow. Consequently, floc formation by turbulent flow in the reactor seemed to positively affect removal efficiency.


Author(s):  
María Reyes ◽  
Nemanja Trifunović ◽  
Saroj Sharma ◽  
Maria Kennedy

This paper elaborates the hydraulic characteristics of the water supply network of the town of Puerto Ayora. First, it intends to replicate the household individual storage by simulating nodal tanks with the use of the EPANET software. Later, it uses the Pressure-Driven Approach (PDA) to develop a methodology that estimates the overflow of storage facilities, one of the main sources of wastage in Puerto Ayora. Finally, it uses the Demand-Driven Approach (DDA), with the aim of assessing the network in the future, under four population growth scenarios. With the chosen moderate growth scenario, two options are suggested in order to tackle the water supply issues at the end of the planning horizon.


2021 ◽  
Author(s):  
Mikhail Basov

The small silicon chip of Schottky diode (0.8x0.8x0.4 mm<sup>3</sup>) with planar arrangement of electrodes (chip PSD) as temperature sensor, which functions under the operating conditions of pressure sensor, was developed. The forward I-V characteristic of chip PSD is determined by potential barrier between Mo and n-Si (N<sub>D</sub> = 3 × 10<sup>15</sup> cm<sup>-3</sup>). Forward voltage U<sub>F</sub> = 208 ± 6 mV and temperature coefficient TC = -1.635 ± 0.015 mV/⁰C (with linearity k<sub>T</sub> <0.4% for temperature range of -65 to +85 ⁰C) at supply current I<sub>F</sub> = 1 mA is achieved. The reverse I-V characteristic has high breakdown voltage U<sub>BR</sub> > 85 V and low leakage current I<sub>L</sub> < 5 μA at 25 ⁰C and I<sub>L</sub> < 130 μA at 85 ⁰C (U<sub>R</sub> = 20 V) because chip PSD contains the structure of two p-type guard rings along the anode perimeter. The application of PSD chip for wider temperature range from -65 to +115 ⁰C is proved. The separate chip PSD of temperature sensor located at a distance of less than 1.5 mm from the pressure sensor chip. The PSD chip transmits input data for temperature compensation of pressure sensor errors by ASIC and for direct temperature measurement.


Sign in / Sign up

Export Citation Format

Share Document