scholarly journals Unifying Gene Expression Complexity and Cellular Operational Efficiency: Application of the Locality and Caching Principles via a Cell-to-Computer Analogy

2022 ◽  
Author(s):  
Wen Jiang ◽  
Denis Feliers ◽  
W. Jim Zheng ◽  
Fangyuan Zhang ◽  
Degeng Wang

Gene expression is time-consuming, and the delay from transcription activation to produced proteins is sequentially longer from bacteria to yeast and to humans. How human cells bypass the delay and attain operational efficiency, i.e., quick proteomic response to signals, is not well understood. The computer has endured the same system latency issue due to much slower information retrieval (hard drive (HD) to memory and to CPU) than CPU execution, and mitigated it via efficient memory management, namely, the spatiotemporal locality principles that control specialized user functions and the permanent caching of core system functions, the operating system (OS) kernel. Thus, in this study, we unified gene expression and HD-memory-CPU information flow as instances of the Shannon information theory, both supporting the respective system operations and consisting of three components: information storage, the execution/decoding step, and the channel for the dynamic storage-to-execution information flow; the gene expression machinery and their regulators, and the OS kernel, were deemed as the respective channels. This abstraction prompted a multi-omic comparative analysis, generating experimental evidence that transcriptome regulation shares the computer memory management principles. First, the temporal locality principle explains the mRNA stabilization-by-translation regulatory mechanism and controls specialized cellular functions. Second, the caching principle explains cytoplasmic mRNA sequestration and the defiance of the locality principle by highly sequestered mRNAs. Third, strikingly, in both systems, the caching principle controls the information channels; similar to permanent caching of OS kernel, basic translation/transcription machinery and their regulators are the top most sequestered mRNAs. Summarily, the locality and the caching principles differentially regulate specialized functions and core system functions, respectively, integrating the complexity of transcriptome regulation with cellular operational latency mitigation.

Author(s):  
Jianhua Wang ◽  
Guan-Zhu Han

Abstract LTR retrotransposons comprise a major component of the genomes of eukaryotes. On occasion, retrotransposon genes can be recruited by their hosts for diverse functions, a process formally referred to as co-option. However, a comprehensive picture of LTR retrotransposon gag gene co-option in eukaryotes is still lacking, with several documented cases exclusively involving Ty3/Gypsy retrotransposons in animals. Here we use a phylogenomic approach to systemically unearth co-option of retrotransposon gag genes above the family level of taxonomy in 2,011 eukaryotes, namely co-option occurring during the deep evolution of eukaryotes. We identify a total of 14 independent gag gene co-option events across more than 740 eukaryote families, eight of which have not been reported previously. Among these retrotransposon gag gene co-option events, nine, four, and one involve gag genes of Ty3/Gypsy, Ty1/Copia, and Bel-Pao retrotransposons, respectively. Seven, four, and three co-option events occurred in animals, plants, and fungi, respectively. Interestingly, two co-option events took place in the early evolution of angiosperms. Both selective pressure and gene expression analyses further support that these co-opted gag genes might perform diverse cellular functions in their hosts, and several co-opted gag genes might be subject to positive selection. Taken together, our results provide a comprehensive picture of LTR retrotransposon gag gene co-option events that occurred during the deep evolution of eukaryotes, and suggest paucity of LTR retrotransposon gag gene co-option during the deep evolution of eukaryotes.


2008 ◽  
Vol 52 (6) ◽  
pp. 2009-2013 ◽  
Author(s):  
G. C. Kedar ◽  
Vickie Brown-Driver ◽  
Daniel R. Reyes ◽  
Mark T. Hilgers ◽  
Mark A. Stidham ◽  
...  

ABSTRACT Targeted antisense and gene replacement mutagenesis experiments demonstrate that only the murA1 gene and not the murA2 gene is required for the normal cellular growth of Bacillus anthracis. Antisense-based modulation of murA1 gene expression hypersensitizes cells to the MurA-specific antibiotic fosfomycin despite the normally high resistance of B. anthracis to this drug.


2008 ◽  
Vol 28 (13) ◽  
pp. 4320-4330 ◽  
Author(s):  
Arneet L. Saltzman ◽  
Yoon Ki Kim ◽  
Qun Pan ◽  
Matthew M. Fagnani ◽  
Lynne E. Maquat ◽  
...  

ABSTRACT Alternative splicing (AS) can regulate gene expression by introducing premature termination codons (PTCs) into spliced mRNA that subsequently elicit transcript degradation by the nonsense-mediated mRNA decay (NMD) pathway. However, the range of cellular functions controlled by this process and the factors required are poorly understood. By quantitative AS microarray profiling, we find that there are significant overlaps among the sets of PTC-introducing AS events affected by individual knockdown of the three core human NMD factors, Up-Frameshift 1 (UPF1), UPF2, and UPF3X/B. However, the levels of some PTC-containing splice variants are less or not detectably affected by the knockdown of UPF2 and/or UPF3X, compared with the knockdown of UPF1. The intron sequences flanking the affected alternative exons are often highly conserved, suggesting important regulatory roles for these AS events. The corresponding genes represent diverse cellular functions, and surprisingly, many encode core spliceosomal proteins and assembly factors. We further show that conserved, PTC-introducing AS events are enriched in genes that encode core spliceosomal proteins. Where tested, altering the expression levels of these core spliceosomal components affects the regulation of PTC-containing splice variants from the corresponding genes. Together, our results show that AS-coupled NMD can have different UPF factor requirements and is likely to regulate many general components of the spliceosome. The results further implicate general spliceosomal components in AS regulation.


2021 ◽  
Vol 22 (2) ◽  
pp. 540
Author(s):  
Mariam Markouli ◽  
Dimitrios Strepkos ◽  
Kostas A. Papavassiliou ◽  
Athanasios G. Papavassiliou ◽  
Christina Piperi

Gliomas account for most primary Central Nervous System (CNS) neoplasms, characterized by high aggressiveness and low survival rates. Despite the immense research efforts, there is a small improvement in glioma survival rates, mostly attributed to their heterogeneity and complex pathophysiology. Recent data indicate the delicate interplay of genetic and epigenetic mechanisms in regulating gene expression and cell differentiation, pointing towards the pivotal role of bivalent genes. Bivalency refers to a property of chromatin to acquire more than one histone marks during the cell cycle and rapidly transition gene expression from an active to a suppressed transcriptional state. Although first identified in embryonal stem cells, bivalent genes have now been associated with tumorigenesis and cancer progression. Emerging evidence indicates the implication of bivalent gene regulation in glioma heterogeneity and plasticity, mainly involving Homeobox genes, Wingless-Type MMTV Integration Site Family Members, Hedgehog protein, and Solute Carrier Family members. These genes control a wide variety of cellular functions, including cellular differentiation during early organism development, regulation of cell growth, invasion, migration, angiogenesis, therapy resistance, and apoptosis. In this review, we discuss the implication of bivalent genes in glioma pathogenesis and their potential therapeutic targeting options.


Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1012-1017 ◽  
Author(s):  
Tatsuya Kobayashi ◽  
Henry Kronenberg

Regulation of gene expression by transcription factors is one of the major mechanisms for controlling cellular functions. Recent advances in genetic manipulation of model animals has allowed the study of the roles of various genes and their products in physiological settings and has demonstrated the importance of specific transcription factors in bone development. Three lineages of bone cells, chondrocytes, osteoblasts, and osteoclasts, develop and differentiate according to their distinct developmental programs. These cells go through multiple differentiation stages, which are often regulated by specific transcription factors. In this minireview, we will discuss selected transcription factors that have been demonstrated to critically affect bone cell development. Further study of these molecules will lead to deeper understanding in mechanisms that govern development of bone.


2021 ◽  
Author(s):  
Subramaniyam Ravichandran ◽  
Maria Razzaq ◽  
Nazia Parveen ◽  
Ambarnil Ghosh ◽  
Kyeong Kyu Kim

Abstract G-quadruplex (G4), a four-stranded DNA or RNA structure containing stacks of guanine tetrads, plays regulatory roles in many cellular functions. So far, conventional G4s containing loops of 1–7 nucleotides have been widely studied. Increasing experimental evidence suggests that unconventional G4s, such as G4s containing long loops (long-loop G4s), play a regulatory role in the genome by forming a stable structure. Other secondary structures such as hairpins in the loop might thus contribute to the stability of long-loop G4s. Therefore, investigation of the effect of the hairpin-loops on the structure and function of G4s is required. In this study, we performed a systematic biochemical investigation of model G4s containing long loops with various sizes and structures. We found that the long-loop G4s are less stable than conventional G4s, but their stability increased when the loop forms a hairpin (hairpin-G4). We also verified the biological significance of hairpin-G4s by showing that hairpin-G4s present in the genome also form stable G4s and regulate gene expression as confirmed by in cellulo reporter assays. This study contributes to expanding the scope and diversity of G4s, thus facilitating future studies on the role of G4s in the human genome.


2004 ◽  
Vol 19 (1) ◽  
pp. 106-116 ◽  
Author(s):  
Damian G. Romero ◽  
Maria Plonczynski ◽  
Gaston R. Vergara ◽  
Elise P. Gomez-Sanchez ◽  
Celso E. Gomez-Sanchez

Evidence for the dysregulation of aldosterone synthesis in cardiovascular pathophysiology has renewed interest in the control of its production. Cellular mechanisms by which angiotensin II (ANG II) stimulates aldosterone synthesis in the adrenal zona glomerulosa are incompletely understood. To elucidate the mechanism of intracellular signaling by ANG II stimulation in the adrenal, we have studied immediate-early regulated genes in human adrenal H295R cells using cDNA microarrays. H295R cells were stimulated with ANG II for 3 h. Gene expression was analyzed by microarray technology and validated by real-time RT-PCR. Eleven genes were found to be upregulated by ANG II. These encode the proteins for ferredoxin, Nor1, Nurr1, c6orf37, CAT-1, A20, MBLL, M-Ras, RhoB, GADD45α, and a novel protein designated FLJ45273 . Maximum expression levels for all genes occurred 3–6 h after ANG II stimulation. This increase was dose dependent and preceded maximal aldosterone production. Other aldosterone secretagogues, K+and endothelin-1 (ET-1), also induced the expression of these genes with variable efficiency depending on the gene and with lower potency than ANG II. ACTH had negligible effect on gene expression except for the CAT-1 and Nurr1 genes. These ANG II-stimulated genes are involved in several cellular functions and are good candidate effectors and regulators of ANG II-mediated effects in adrenal zona glomerulosa.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Madara Ratnadiwakara ◽  
Stuart K Archer ◽  
Craig I Dent ◽  
Igor Ruiz De Los Mozos ◽  
Traude H Beilharz ◽  
...  

The establishment and maintenance of pluripotency depend on precise coordination of gene expression. We establish serine-arginine-rich splicing factor 3 (SRSF3) as an essential regulator of RNAs encoding key components of the mouse pluripotency circuitry, SRSF3 ablation resulting in the loss of pluripotency and its overexpression enhancing reprogramming. Strikingly, SRSF3 binds to the core pluripotency transcription factor Nanog mRNA to facilitate its nucleo-cytoplasmic export independent of splicing. In the absence of SRSF3 binding, Nanog mRNA is sequestered in the nucleus and protein levels are severely downregulated. Moreover, SRSF3 controls the alternative splicing of the export factor Nxf1 and RNA regulators with established roles in pluripotency, and the steady-state levels of mRNAs encoding chromatin modifiers. Our investigation links molecular events to cellular functions by demonstrating how SRSF3 regulates the pluripotency genes and uncovers SRSF3-RNA interactions as a critical means to coordinate gene expression during reprogramming, stem cell self-renewal and early development.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hong Wang ◽  
Kang Zhuang ◽  
Lei Gao ◽  
Linna Zhang ◽  
Hongling Yang

Visual environment plays an important role in the occurrence of myopia. We previously showed that the different flashing lights could result in distinct effects on the ocular growth and development of myopia. CCN2 has been reported to regulate various cellular functions and biological processes. However, whether CCN2 signaling was involved in the red flashing light-induced myopia still remains unknown. In the present study, we investigated the effects of the red flashing lights exposure on the refraction and axial length of the eyesin vivoand then evaluated their effects on the expression of CCN2 and TGF-βin sclera tissues. Our data showed that the eyes exposed to the red flashing light became more myopic with a significant increase of the axial length and decrease of the refraction. Both CCN2 and TGF-β, as well as p38 MAPK and PI3K, were highly expressed in the sclera tissues exposed to the red flashing light. Both CCN2 and TGF-βwere found to have the same gene expression profilein vivo. In conclusion, our findings found that CCN2 signaling pathway plays an important role in the red flashing light-induced myopiain vivo. Moreover, our study establishes a useful animal model for experimental myopia research.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
L. Dalle Carbonare ◽  
M. Mottes ◽  
S. Cheri ◽  
M. Deiana ◽  
F. Zamboni ◽  
...  

Lack of physical exercise is considered an important risk factor for chronic diseases. On the contrary, physical exercise reduces the morbidity rates of obesity, diabetes, bone disease, and hypertension. In order to gain novel molecular and cellular clues, we analyzed the effects of physical exercise on differentiation of mesenchymal circulating progenitor cells (M-CPCs) obtained from runners. We also investigated autophagy and telomerase-related gene expression to evaluate the involvement of specific cellular functions in the differentiation process. We performed cellular and molecular analyses in M-CPCs, obtained by a depletion method, of 22 subjects before (PRE RUN) and after (POST RUN) a half marathon performance. In order to prove our findings, we performed also in vitro analyses by testing the effects of runners’ sera on a human bone marrow-derived mesenchymal stem (hBM-MSC) cell line. PCR array analyses of PRE RUN versus POST RUN M-CPC total RNAs put in evidence several genes which appeared to be modulated by physical activity. Our results showed that physical exercise promotes differentiation. Osteogenesis-related genes as RUNX2, MSX1, and SPP1 appeared to be upregulated after the run; data showed also increased levels of BMP2 and BMP6 expressions. SOX9, COL2A1, and COMP gene enhanced expression suggested the induction of chondrocytic differentiation as well. The expression of telomerase-associated genes and of two autophagy-related genes, ATG3 and ULK1, was also affected and correlated positively with MSC differentiation. These data highlight an attractive cellular scenario, outlining the role of autophagic response to physical exercise and suggesting new insights into the benefits of physical exercise in counteracting chronic degenerative conditions.


Sign in / Sign up

Export Citation Format

Share Document