scholarly journals Past monsoons : A review of proxy data and modelling

MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 275-284
Author(s):  
D. Jagadheesha ◽  
R. Ramesh

Recent modelling studies have given insight into the role of internal feedback processes among components of the climate system on the evolution of monsoon strength since the Last Glacial Maximum (21,000 years ago). Here we present an overview of these modelling studies related to the summer monsoon over India and northern Africa. These studies indicate that the seasonal insolation changes alone do not explain the observed extent of hydrological changes during the early and middle Holocene over northern Africa. To simulate the extent of observed changes during this period incorporation of vegetation as an active component in climate models appears to be necessary. Over the Indian region, model results show that precipitation-soil moisture feedbacks play an important role in determining the response of the monsoon to changes in insolation and glacial-age surface boundary conditions. Indian monsoon strength from  proxy records during the early and middle. Holocene have also been used in conjunction with coupled ocean atmosphere general circulation model experiments to refute the suggestion that semi-permanent warm surface conditions prevailed over equatorial Pacific ocean from 11 to 5ka.

2007 ◽  
Vol 20 (4) ◽  
pp. 765-771 ◽  
Author(s):  
Markus Jochum ◽  
Clara Deser ◽  
Adam Phillips

Abstract Atmospheric general circulation model experiments are conducted to quantify the contribution of internal oceanic variability in the form of tropical instability waves (TIWs) to interannual wind and rainfall variability in the tropical Pacific. It is found that in the tropical Pacific, along the equator, and near 25°N and 25°S, TIWs force a significant increase in wind and rainfall variability from interseasonal to interannual time scales. Because of the stochastic nature of TIWs, this means that climate models that do not take them into account will underestimate the strength and number of extreme events and may overestimate forecast capability.


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


2012 ◽  
Vol 12 (6) ◽  
pp. 13827-13880
Author(s):  
R. D. Field ◽  
C. Risi ◽  
G. A. Schmidt ◽  
J. Worden ◽  
A. Voulgarakis ◽  
...  

Abstract. Retrievals of the isotopic composition of water vapor from the Aura Tropospheric Emission Spectrometer (TES) have unique value in constraining moist processes in climate models. Accurate comparison between simulated and retrieved values requires that model profiles that would be poorly retrieved are excluded, and that an instrument operator be applied to the remaining profiles. Typically, this is done by sampling model output at satellite measurement points and using the quality flags and averaging kernels from individual retrievals at specific places and times. This approach is not reliable when the modeled meteorological conditions influencing retrieval sensitivity are different from those observed by the instrument at short time scales, which will be the case for free-running climate simulations. In this study, we describe an alternative, "categorical" approach to applying the instrument operator, implemented within the NASA GISS ModelE general circulation model. Retrieval quality and averaging kernel structure are predicted empirically from model conditions, rather than obtained from collocated satellite observations. This approach can be used for arbitrary model configurations, and requires no agreement between satellite-retrieved and modeled meteorology at short time scales. To test this approach, nudged simulations were conducted using both the retrieval-based and categorical operators. Cloud cover, surface temperature and free-tropospheric moisture content were the most important predictors of retrieval quality and averaging kernel structure. There was good agreement between the δD fields after applying the retrieval-based and more detailed categorical operators, with increases of up to 30‰ over the ocean and decreases of up to 40‰ over land relative to the raw model fields. The categorical operator performed better over the ocean than over land, and requires further refinement for use outside of the tropics. After applying the TES operator, ModelE had δD biases of −8‰ over ocean and −34‰ over land compared to TES δD, which were less than the biases using raw modeled δD fields.


2011 ◽  
Vol 4 (4) ◽  
pp. 1035-1049 ◽  
Author(s):  
W.-L. Chan ◽  
A. Abe-Ouchi ◽  
R. Ohgaito

Abstract. Recently, PlioMIP (Pliocene Model Intercomparison Project) was established to assess the ability of various climate models to simulate the mid-Pliocene warm period (mPWP), 3.3–3.0 million years ago. We use MIROC4m, a fully coupled atmosphere-ocean general circulation model (AOGCM), and its atmospheric component alone to simulate the mPWP, utilizing up-to-date data sets designated in PlioMIP as boundary conditions and adhering to the protocols outlined. In this paper, a brief description of the model is given, followed by an explanation of the experimental design and implementation of the boundary conditions, such as topography and sea surface temperature. Initial results show increases of approximately 10°C in the zonal mean surface air temperature at high latitudes accompanied by a decrease in the equator-to-pole temperature gradient. Temperatures in the tropical regions increase more in the AOGCM. However, warming of the AOGCM sea surface in parts of the northern North Atlantic Ocean and Nordic Seas is less than that suggested by proxy data. An investigation of the model-data discrepancies and further model intercomparison studies can lead to a better understanding of the mid-Pliocene climate and of its role in assessing future climate change.


2016 ◽  
Vol 16 (23) ◽  
pp. 15413-15424 ◽  
Author(s):  
Takuro Michibata ◽  
Kentaroh Suzuki ◽  
Yousuke Sato ◽  
Toshihiko Takemura

Abstract. Aerosol–cloud interactions are one of the most uncertain processes in climate models due to their nonlinear complexity. A key complexity arises from the possibility that clouds can respond to perturbed aerosols in two opposite ways, as characterized by the traditional “cloud lifetime” hypothesis and more recent “buffered system” hypothesis. Their importance in climate simulations remains poorly understood. Here we investigate the response of the liquid water path (LWP) to aerosol perturbations for warm clouds from the perspective of general circulation model (GCM) and A-Train remote sensing, through process-oriented model evaluations. A systematic difference is found in the LWP response between the model results and observations. The model results indicate a near-global uniform increase of LWP with increasing aerosol loading, while the sign of the response of the LWP from the A-Train varies from region to region. The satellite-observed response of the LWP is closely related to meteorological and/or macrophysical factors, in addition to the microphysics. The model does not reproduce this variability of cloud susceptibility (i.e., sensitivity of LWP to perturbed aerosols) because the parameterization of the autoconversion process assumes only suppression of rain formation in response to increased cloud droplet number, and does not consider macrophysical aspects that serve as a mechanism for the negative responses of the LWP via enhancements of evaporation and precipitation. Model biases are also found in the precipitation microphysics, which suggests that the model generates rainwater readily even when little cloud water is present. This essentially causes projections of unrealistically frequent and light rain, with high cloud susceptibilities to aerosol perturbations.


2020 ◽  
Author(s):  
Saurav Pradhananga ◽  
Arthur Lutz ◽  
Archana Shrestha ◽  
Indira Kadel ◽  
Bikash Nepal ◽  
...  

A supplement to the Climate Change Scenarios for Nepal report published by the Ministry of Forests and Environment for the National Adaptation Plan (NAP) Process, this manual provides detailed information about the processes through which the assessment highlighted in the report can be carried out. They include – selection of the general circulation/climate models (GCMs), downscaling of the GCM dataset, assessment of changes in precipitation and temperature, and assessment of change in climate extremes. The manual downscales climate datasets for the Koshi River basin, the Kabul River basin, and the Kailash Sacred Landscape to analyse future scenarios in these basins and the landscape.


2006 ◽  
Vol 24 (9) ◽  
pp. 2403-2412 ◽  
Author(s):  
A. L. Dobbin ◽  
E. M. Griffin ◽  
A. D. Aylward ◽  
G. H. Millward

Abstract. Numerical modelling of thermospheric temperature changes associated with periods of high geomagnetic activity are often inaccurate due to unrealistic representation of nitric oxide (NO) densities and associated 5.3-μm radiative cooling. In previous modelling studies, simplistic parameterisations of NO density and variability have often been implemented in order to constrain thermospheric temperature predictions and post storm recovery timescales during and following periods of high auroral activity. In this paper we use the University College London (UCL) 3-D Coupled Thermosphere and Middle Atmosphere (CMAT) General Circulation Model to simulate the 11-day period from 23 October to 3 November 2003, during which the Earth experienced some of the largest geomagnetic activity ever recorded; the so called "Halloween storm". This model has recently been updated to include a detailed self consistent calculation of NO production and transport. Temperatures predicted by the model compare well with those observed by the UCL Fabry Perot Interferometer at Kiruna, northern Sweden, when changes in solar and auroral activity are taken into account in the calculation of NO densities. The spatial distribution of predicted temperatures at approximately 250-km altitude is also discussed. Simulated NO densities at approximately 110 km are presented. Large quantities of NO are found to be present at to the equator, one to two days after the most intense period of geomagnetic activity. This is the first 3-D GCM simulation of NO production and transport over the 2003 Halloween storm period.


2011 ◽  
Vol 7 (1) ◽  
pp. 249-263 ◽  
Author(s):  
A. Voigt ◽  
D. S. Abbot ◽  
R. T. Pierrehumbert ◽  
J. Marotzke

Abstract. We study the initiation of a Marinoan Snowball Earth (~635 million years before present) with the state-of-the-art atmosphere-ocean general circulation model ECHAM5/MPI-OM. This is the most sophisticated model ever applied to Snowball initiation. A comparison with a pre-industrial control climate shows that the change of surface boundary conditions from present-day to Marinoan, including a shift of continents to low latitudes, induces a global-mean cooling of 4.6 K. Two thirds of this cooling can be attributed to increased planetary albedo, the remaining one third to a weaker greenhouse effect. The Marinoan Snowball Earth bifurcation point for pre-industrial atmospheric carbon dioxide is between 95.5 and 96% of the present-day total solar irradiance (TSI), whereas a previous study with the same model found that it was between 91 and 94% for present-day surface boundary conditions. A Snowball Earth for TSI set to its Marinoan value (94% of the present-day TSI) is prevented by doubling carbon dioxide with respect to its pre-industrial level. A zero-dimensional energy balance model is used to predict the Snowball Earth bifurcation point from only the equilibrium global-mean ocean potential temperature for present-day TSI. We do not find stable states with sea-ice cover above 55%, and land conditions are such that glaciers could not grow with sea-ice cover of 55%. Therefore, none of our simulations qualifies as a "slushball" solution. While uncertainties in important processes and parameters such as clouds and sea-ice albedo suggest that the Snowball Earth bifurcation point differs between climate models, our results contradict previous findings that Snowball Earth initiation would require much stronger forcings.


2017 ◽  
Author(s):  
Yoko Tsushima ◽  
Florent Brient ◽  
Stephen A. Klein ◽  
Dimitra Konsta ◽  
Christine Nam ◽  
...  

Abstract. The CFMIP Diagnostic Codes Catalogue assembles cloud metrics, diagnostics and methodologies, together with programs to diagnose them from General Circulation Model (GCM) outputs written by various members of the CFMIP community. This aims to facilitate use of the diagnostics by the wider community studying climate and climate change. This paper describes the diagnostics and metrics which are currently in the catalogue, together with examples of their application to model evaluation studies and a summary of some of the insights these diagnostics have provided on the main shortcomings in current GCMs. Analysis of outputs from CFMIP and CMIP6 experiments will also be facilitated by the sharing of diagnostic codes via this catalogue. Any code which implements diagnostics relevant to analysing clouds – including cloud-circulation interactions and the contribution of clouds to estimates of climate sensitivity in models – and which is documented in peer-reviewed studies can be included in the catalogue. We very much welcome additional contributions to further support community analysis of CMIP6 outputs.


2006 ◽  
Vol 6 (12) ◽  
pp. 4669-4685 ◽  
Author(s):  
S. Brönnimann ◽  
M. Schraner ◽  
B. Müller ◽  
A. Fischer ◽  
D. Brunner ◽  
...  

Abstract. A pronounced ENSO cycle occurred from 1986 to 1989, accompanied by distinct dynamical and chemical anomalies in the global troposphere and stratosphere. Reproducing these effects with current climate models not only provides a model test but also contributes to our still limited understanding of ENSO's effect on stratosphere-troposphere coupling. We performed several sets of ensemble simulations with a chemical climate model (SOCOL) forced with global sea surface temperatures. Results were compared with observations and with large-ensemble simulations performed with an atmospheric general circulation model (MRF9). We focus our analysis on the extratropical stratosphere and its coupling with the troposphere. In this context, the circulation over the North Atlantic sector is particularly important. Relative to the La Niña winter 1989, observations for the El Niño winter 1987 show a negative North Atlantic Oscillation index with corresponding changes in temperature and precipitation patterns, a weak polar vortex, a warm Arctic middle stratosphere, negative and positive total ozone anomalies in the tropics and at middle to high latitudes, respectively, as well as anomalous upward and poleward Eliassen-Palm (EP) flux in the midlatitude lower stratosphere. Most of the tropospheric features are well reproduced in the ensemble means in both models, though the amplitudes are underestimated. In the stratosphere, the SOCOL simulations compare well with observations with respect to zonal wind, temperature, EP flux, meridional mass streamfunction, and ozone, but magnitudes are underestimated in the middle stratosphere. With respect to the mechanisms relating ENSO to stratospheric circulation, the results suggest that both, upward and poleward components of anomalous EP flux are important for obtaining the stratospheric signal and that an increase in strength of the Brewer-Dobson circulation is part of that signal.


Sign in / Sign up

Export Citation Format

Share Document