immersion enthalpy
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 1)

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1492
Author(s):  
Carlos A. Guerrero-Fajardo ◽  
Liliana Giraldo ◽  
Juan Carlos Moreno-Piraján

In this work, the textural parameters of graphene oxide (GO) and graphite (Gr) samples were determined. The non-local density functional theory (NLDFT) and quenched solid density functional theory (QSDFT) kernels were used to evaluate the pore size distribution (PSD) by modeling the pores as slit, cylinder and slit-cylinder. The PSD results were compared with the immersion enthalpies obtained using molecules with different kinetic diameter (between 0.272 nm and 1.50 nm). Determination of immersion enthalpy showed to track PSD for GO and graphite (Gr), which was used as a comparison solid. Additionally, the functional groups of Gr and GO were determined by the Boehm method. Donor number (DN) Gutmann was used as criteria to establish the relationship between the immersion enthalpy and the parameter of the probe molecules. It was found that according to the Gutmann DN the immersion enthalpy presented different values that were a function of the chemical groups of the materials. Finally, the experimental and modeling results were critically discussed.


2020 ◽  
Vol 310 ◽  
pp. 113140
Author(s):  
Diana Hernández-Monje ◽  
Liliana Giraldo Gutiérrez ◽  
Juan Carlos Moreno-Piraján

Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 180
Author(s):  
Diana Hernández-Monje ◽  
Liliana Giraldo ◽  
Juan Moreno-Piraján

The enthalpy of immersion for five activated carbons (with different surface chemistry) in cyclohexane and hexane was determined in order to observe the intensity of the solid–liquid interaction. The enthalpy of immersion was related to the properties of activated carbons, such as micropore volume, total basic groups content, and the EoWo product, that characterized each solid-liquid system. The values for the immersion enthalpy were between −21.2 and −91.7 J g−1 for cyclohexane and between −16.4 and −66.1 J g−1 for hexane. It showed greater interaction between the cyclohexane and the activated carbons and it was related to the properties of this adsorbate, such as molecular size and molecular arrangement. The difference in the enthalpy of immersion between the solvents per unit of micropore volume for the set of activated carbons was calculated obtaining a value of −487 J cm−3.


Data in Brief ◽  
2019 ◽  
Vol 22 ◽  
pp. 83-89 ◽  
Author(s):  
Diana Hernández-Monje ◽  
Liliana Giraldo ◽  
Juan Carlos Moreno-Piraján

2018 ◽  
Vol 4 (4) ◽  
pp. 62 ◽  
Author(s):  
Valentina Bernal ◽  
Liliana Giraldo ◽  
Juan Moreno-Piraján

The adsorption of salicylic acid, acetaminophen, and methylparaben (pharmaceutical products derived from phenol) on carbons activated with different surface chemistries was carried out. We evaluated the effect of the physicochemical properties of the adsorbent and adsorbates on the adsorption capacity. A study of the adsorbate–adsorbent interactions via immersion calorimetry in the analytes solutions at different concentrations was included, in addition to the equilibrium data analysis. The results show that the pharmaceutical compounds (2.28–0.71 mmol g−1) have lower adsorption capacities in the activated carbon with the highest content of oxygenated groups (acids), while the activated carbons with amphoteric characteristics increase the capacities of adsorption (2.60–1.38 mmol g−1). This behavior may be associated with the increased affinity between the adsorbent and solvent due to the presence of polar groups, which was corroborated by the high immersion enthalpy value in water (ΔHimmH2O = −66.6 J g−1). The equilibrium data, adjusted to the Freundlich adsorption model, indicated that the heterogeneous adsorption processes involve immersion enthalpy values between −9.42 and −24.3 J g−1.


2018 ◽  
Vol 8 (6) ◽  
pp. 843 ◽  
Author(s):  
Ana Carvajal-Bernal ◽  
Fernando Gómez-Granados ◽  
Liliana Giraldo ◽  
Juan Moreno-Piraján

2017 ◽  
Vol 36 (3-4) ◽  
pp. 833-850 ◽  
Author(s):  
Valentina Bernal ◽  
Liliana Giraldo ◽  
Juan C Moreno-Piraján

The inappropriate use of pain medication has led to the appearance of salicylic acid molecules (aspirin’s metabolite excretion) in surface water, which causes problems for the environment. The adsorption process using activated carbon is one of the processes that is used for the removal of organic compounds present in the aqueous phase; however, the percentage of removal depends on the physicochemical properties of the adsorbent and the adsorbate such as: pore size, surface area, surface chemistry, molecular size and solubility. In this work, we have studied the adsorbent–adsorbate interactions through the determination of the immersion enthalpy of the activated carbon in salicylic acid aqueous solutions; due to the solute and activated carbon surface have functional groups capable of ionized with the pH, the adsorption study was carried out at pH 2, 7, and 11. The activated carbons selected for the study were a granular activated carbon and a reduced activated carbon to 1173 K; as the immersion liquid were used salicylic acid aqueous solutions with concentrations between 0.072 mmol/ l and 0.72 mmol/ l, the solutions at pH 2 and 11 were prepared with HCl and NaOH solutions, respectively. It was determined that the immersion enthalpy is between −7.39 J /g and −22.5 J/g for the reduced activated carbon and between −7.63 J/g and −16.73 J/g for the granular activated carbon.


Sign in / Sign up

Export Citation Format

Share Document