scholarly journals Effect of Footwear on Running Impact Loading in the Preschool Years

Author(s):  
Jan Plesek ◽  
Joseph Hamill ◽  
Denisa Blaschova ◽  
Julia Freedman Silvernail ◽  
Daniel Jandacka

Abstract Background Previous research indicated that running barefoot or in minimalist shoes led to lower impact loading in an adolescent and adult population. Running as fundamental locomotor skill significantly develops during early childhood (preschool age). However, no study has focused on effect of footwear condition on lower limb impact loading during running in this age. Therefore, the purpose of this study was to assess effect of footwear conditions (barefoot, minimalist and standard running shoes) on running impact loading in the preschool years. Methods Fourty-eight habitually shod preschool children were divided into 4 age groups. Children performed simple running game in 3 different footwear conditions (random counter-balanced order), 3-dimensional biomechanical analysis were carried out during overground running. The key dependent variables included vertical ground reaction force (VGRF) and vertical instantaneous loading rate (VILR). Statistical parametric mapping was performed to reveal possible differences in VGRF and one-way repeated measures ANOVA in VILR. Results Three-year-old children displayed significantly lower impact peak of VGRF in barefoot condition compared to minimalist (3-7% stance, P = 0.012) and standard running shoes (7-11% stance, P = 0.009). Furthermore, in 3-year-old in minimalist shoes had higher loading than in standard running shoes (0-4% stance, P = 0.007). There were also differences in VILR, where 3-year-old had lower loading in barefoot than in minimalist (P = 0.010, d = 1.19) or standard running shoes (P = 0.045, d = 0.98). No differences were found in older children. Conclusion Running in minimalist shoes did not imitate barefoot running and did not lower impact forces compared to standard running shoes in 3-year-old children. On the contrary, increased loading was observed in minimalist shoes in early running developmental stages. Professionals who work with children should consider effect of minimalist shoes on impact loading (running on hard surfaces).

2018 ◽  
Vol 6 (6) ◽  
pp. 232596711877572 ◽  
Author(s):  
Christine D. Pollard ◽  
Justin A. Ter Har ◽  
J.J. Hannigan ◽  
Marc F. Norcross

Background: Lower extremity injuries are common among runners. Recent trends in footwear have included minimal and maximal running shoe types. Maximal running shoes are unique because they provide the runner with a highly cushioned midsole in both the rearfoot and forefoot. However, little is known about how maximal shoes influence running biomechanics. Purpose: To examine the influence of maximal running shoes on biomechanics before and after a 5-km (5K) run as compared with neutral running shoes. Study Design: Controlled laboratory study. Methods: Fifteen female runners participated in 2 testing sessions (neutral shoe session and maximal shoe session), with 7 to 10 days between sessions. Three-dimensional kinematic and kinetic data were collected while participants ran along a 10-m runway. After 5 running trials, participants completed a 5K treadmill run, followed by 5 additional running trials. Variables of interest included impact peak of the vertical ground-reaction force, loading rate, and peak eversion. Differences were determined by use of a series of 2-way repeated-measures analysis of variance models (shoe × time). Results: A significant main effect was found for shoe type for impact peak and loading rate. When the maximal shoe was compared with the neutral shoe before and after the 5K run, participants exhibited an increased loading rate (mean ± SE: pre–maximal shoe, 81.15 body weights/second [BW/s] and pre–neutral shoe, 60.83 BW/s [ P < .001]; post–maximal shoe, 79.10 BW/s and post–neutral shoe, 61.22 BW/s [ P = .008]) and increased impact peak (pre–maximal shoe, 1.76 BW and pre–neutral shoe, 1.58 BW [ P = .004]; post–maximal shoe, 1.79 BW and post–neutral shoe, 1.55 BW [ P = .003]). There were no shoe × time interactions and no significant findings for peak eversion. Conclusion: Runners exhibited increased impact forces and loading rate when running in a maximal versus neutral shoe. Because increases in these variables have been associated with an increased risk of running-related injuries, runners who are new to running in a maximal shoe may be at an increased risk of injury. Clinical Relevance: Understanding the influence of running footwear as an intervention that affects running biomechanics is important for clinicians so as to reduce patient injury.


2017 ◽  
Vol 38 (06) ◽  
pp. 481-486 ◽  
Author(s):  
Bradley Bowser ◽  
William Rose ◽  
Robert McGrath ◽  
Jilian Salerno ◽  
Joshua Wallace ◽  
...  

AbstractBarefoot and minimal footwear running has led to greater interest in the biomechanical effects of different types of footwear. The effect of running footwear on dynamic stability is not well understood. The purpose of this study was to compare dynamic stability and impact loading across 3 footwear conditions; barefoot, minimal footwear and standard running shoes. 25 injury free runners (21 male, 4 female) completed 5 single-leg jump landings in each footwear condition. Dynamic stability was assessed using the dynamic postural stability index and its directional components (mediolateral, anteroposterior, vertical). Peak vertical ground reaction force and vertical loadrates were also compared across footwear conditions. Dynamic stability was dependent on footwear type for all stability indices (ANOVA, p<0.05). Post-hoc tests showed dynamic stability was greater when barefoot than in running shoes for each stability index (p<0.02) and greater than minimal footwear for the anteroposterior stability index (p<0.01). Peak vertical force and average loadrates were both dependent on footwear (p≤0.05). Dynamic stability, peak vertical force, and average loadrates during single-leg jump landings appear to be affected by footwear type. The results suggest greater dynamic stability and lower impact loading when landing barefoot or in minimal footwear.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0020 ◽  
Author(s):  
Irene Davis ◽  
Todd Hayano ◽  
Adam Tenforde

Category: Other Introduction/Purpose: While the etiology of injuries is multifactorial, impact loading, as measured by the loadrate of the vertical ground reaction force has been implicated. These loadrates are typically measured with a force plate. However, this limits the measure of impacts to laboratory environments. Tibial acceleration, another measure of running impacts, is considered a surrogate for loadrate. It can be measured using new wearable technology that can be used in a runner’s natural environment. However, the correlation between tibial acceleration measured from mobile devices and vertical ground reaction force loadrates, measured from forceplates, is unknown. The purpose of this study was to determine the correlation between vertical and resultant loadrates to vertical and resultant tibial acceleration across different footstrike patterns (FSP) in runners. Methods: The study involved a sample of convenience made up of 169 runners (74 F, 95 M; age: 38.66±13.08 yrs) presenting at a running injury clinic. This included 25 habitual forefoot strike (FFS), 17 midfoot strike (MFS) and 127 rearfoot strike (RFS) runners. Participants ran on an instrumented treadmill (average speed 2.52±0.25 m/s), with a tri-axial accelerometer attached at the left distal medial tibia. Only subjects running with pain <3/10 on a VAS scale during the treadmill run were included to reduce the confounding effect of pain. Vertical average, vertical instantaneous and resultant instantaneous loadrates (VALR, VILR and RILR) and peak vertical and resultant tibial accelerations (VTA, RTA) were averaged for 8 consecutive left steps. Correlation coefficients (r) were calculated between tibial accelerations and loadrates. Results: All tibial accelerations were significantly correlated across all loadrates, with the exception of RTA with VILR for FFS (Table 1) which was nearly significant (p=0.068). Correlations ranged from 0.37-0.82. VTA was strongly correlated with all loadrates (r = 0.66). RTA was also strongly correlated with both loadrates for RFS and MFS, but only moderately correlated with loadrates for FFS (r = 0.47). Correlations were similar across the different loadrates (VALR, VILR, RILR). Conclusion: The stronger correlation between vertical tibial acceleration and all loadrates (VALR, VILR, RILR) suggests that it may be the best surrogate for loadrates when studying impact loading in runners.


2015 ◽  
Vol 28 (05) ◽  
pp. 318-322 ◽  
Author(s):  
M. Stejskal ◽  
B. T. Torres ◽  
G. S. Sandberg ◽  
J. A. Sapora ◽  
R. K. Dover ◽  
...  

SummaryObjective: To compare peak vertical force (PVF) and vertical impulse (VI) data collected with one and two force plates during the same collection time period in healthy dogs at a trot.Animals: Seventeen healthy client-owned adult dogs.Methods: Vertical ground reaction force (GRF) data were collected in a crossover study design, with four sessions on two consecutive days, and then two weeks apart (days 1, 2, 15, and 16) using both one and two force plates collection methods. A repeated measures model analysis of variance (ANOVA) was used to test for differences in force plate PVF, VI, and average time per trial (ATT) between days, weeks, and systems (1 plate versus 2 plates). Coefficients of variation for PVF and VI were also calculated separately by forelimbs and hindlimbs, plates, day, and week.Results: The time required to obtain a valid trial was significantly longer using a single force plate when compared with two force plates. Comparing GRF data for all dogs, significant differences in PVF data were found between one and two force plates, however, these differences were diminutive in absolute magnitude, and of unknown clinical importance. Examination of the coefficients of variation for PVF and VI during the different collection periods yielded similar results.Conclusions: Use of two force plates decreased trial repetition and collection time. Vertical GRF data had a similar coefficient of variation with either one or two force plates collection techniques in healthy dogs.


2019 ◽  
Vol 47 (4) ◽  
pp. 968-973 ◽  
Author(s):  
J.J. Hannigan ◽  
Christine D. Pollard

Background: A recent study suggested that maximal running shoes may increase the impact force and loading rate of the vertical ground-reaction force during running. It is currently unknown whether runners will adapt to decrease the impact force and loading rate over time. Purpose: To compare the vertical ground-reaction force and ankle kinematics between maximal and traditional shoes before and after a 6-week acclimation period to the maximal shoe. Study Design: Controlled laboratory study. Methods: Participants ran in a traditional running shoe and a maximal running shoe during 2 testing sessions 6 weeks apart. During each session, 3-dimensional kinematics and kinetics were collected during overground running. Variables of interest included the loading rate, impact peak, and active peak of the vertical ground-reaction force, as well as eversion and dorsiflexion kinematics. Two-way repeated measures analyses of variance compared data within participants. Results: No significant differences were observed in any biomechanical variable between time points. The loading rate and impact peak were higher in the maximal shoe. Runners were still everted at toe-off and landed with less dorsiflexion, on average, in the maximal shoe. Conclusion: Greater loading rates and impact forces were previously found in maximal running shoes, which may indicate an increased risk of injury. The eversion mechanics observed in the maximal shoes may also increase the risk of injury. A 6-week transition to maximal shoes did not significantly change any of these measures. Clinical Relevance: Maximal running shoes are becoming very popular and may be considered a treatment option for some injuries. The biomechanical results of this study do not support the use of maximal running shoes. However, the effect of these shoes on pain and injury rates is unknown.


Kinesiology ◽  
2018 ◽  
Vol 50 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Milan Čoh ◽  
Kim Hébert-Losier ◽  
Stanko Štuhec ◽  
Vesna Babić ◽  
Matej Supej

This study investigated the maximal sprint velocity kinematics of the fastest 100 m sprinter, Usain Bolt. Two high-speed video cameras recorded kinematics from 60 to 90 m during the men 100 m final at the IAAF World Challenge Zagreb 2011, Croatia. Despite a relatively slow reaction time (194 ms), Bolt won in 9.85 s (mean velocity: 10.15 m/s). His fastest 20-m section velocity was 12.14 m/s, reached between 70 and 90 m, by 2.70-m long strides and 4.36 strides/s frequency. At the maximal velocity, his contact and flight times were 86 and 145 ms, respectively, and vertical ground reaction force generated equalled 4.2 times his body weight (3932 N). The braking and propulsion phase represented 37% and 63% of ground contact, respectively, with his centre of mass (CoM) exhibiting minor reductions in horizontal velocity (2.7%) and minimal vertical displacement (4.9 cm). Emerged Bolt’s maximal sprint velocity and international predominance from coordinated motor abilities, power generation capacities, and effective technique. This study confirms that his maximal velocity was achieved by means of relatively long strides, minimal braking phase, high vertical ground reaction force, and minimal vertical displacement of CoM. This study is the first in-depth biomechanical analysis of Bolt’s maximal sprinting velocity with the segmental reconstruction.


2014 ◽  
Vol 10 (3) ◽  
pp. 199-206 ◽  
Author(s):  
J. Sinclair ◽  
C. Franks ◽  
J.F. Goodwin ◽  
R. Naemi ◽  
N. Chockalingam

Runners have sought to utilise athletic footwear as one of the mechanisms by which they might attenuate their risk of injury and improve their performance. New commercially available footwear which claims to boost energy return have been designed utilising an expanded thermoplastic polyurethane midsole. These footwear have been shown to improve running economy, but their clinical efficacy has not yet been established. This study aimed to examine the 3-D kinetics and kinematics when running in footwear that claims to promote energy return in relation to conventional running trainers. Fifteen male participants ran at 4.0 m/s (±5%) in each footwear condition. Lower extremity kinematics were collected in the sagittal, coronal and transverse planes using a 3-D motion analysis system. Simultaneous tibial acceleration and vertical ground reaction force parameters were also obtained. Impact parameters and 3-D kinematics were contrasted using paired samples t-tests. The results indicate that tibial accelerations were significantly greater in the footwear designed to improve energy return. In addition the 3-D kinematic analysis also showed that peak eversion and tibial internal rotation were significantly greater in the footwear designed to improve energy return. On the basis of these observations the current investigation suggests that these new footwear may place runners at an increased risk from chronic injury.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yi Wang ◽  
Wing-Kai Lam ◽  
Lok-Yee Pak ◽  
Charis K.-W. Wong ◽  
Mohammad F. Tan ◽  
...  

While colour of red can play a significant role in altering human perception and performances, little is known about its perceptual-motor effect on running mechanics. This study examined the effects of variations in insole colours on impact forces, ankle kinematics, and trial-to-trial reliability at various running speeds. Sixteen male recreational runners ran on instrumented treadmill at slow (90%), preferred (100%), and fast (110%) running speeds when wearing insoles in red, blue, and white colours. We used synchronized force platform and motion capturing system to measure ground reaction force, ankle sagittal and frontal kinematics, and movement variability. A two-way (colour x speed) ANOVA with repeated measures was performed with Bonferroni adjusted post hoc comparisons, with alpha set at 0.05. Data analyses indicated that participants demonstrated higher impact and maximum loading rate of ground reaction force, longer stride length, shorter contact time, and smaller touchdown ankle inversion as well as larger ankle sagittal range of motion (RoM), but smaller frontal RoM in fast speed as compared with preferred P < 0.05 and slow speeds P < 0.001 . Although insole colour had minimal effect on mean values of any tested variables P > 0.05 , participants wearing red-coloured orthoses showed higher coefficient of variation values for maximum loading rate than wearing blue insoles P = 0.009 . These results suggest that running at faster speed would lead to higher impact loading and altered lower-limb mechanics and that colour used on the tops of insoles influences the wearers’ movement repeatability, with implications for use of foot insole in running.


2021 ◽  
Vol 11 (24) ◽  
pp. 12144
Author(s):  
Masen Zhang ◽  
Huijuan Shi ◽  
Hui Liu ◽  
Xinglong Zhou

The heel-to-toe drop of running shoes is a key parameter influencing lower extremity kinematics during running. Previous studies testing running shoes with lower or larger drops generally used minimalist or maximalist shoes, where the factors outside of the drop may lead to the observed changes in running biomechanics. Therefore, our aim was to compare the strike patterns, impact force, and lower extremity biomechanics when running in shoes that varied only in their drops. Eighteen habitual rearfoot strikers performed trials wearing running shoes with four drop conditions: 15 mm, 10 mm, 5 mm, and without a drop. Three-dimensional (3D) tracks of the reflective markers and impact force were synchronously collected using a video graphic acquisition system and two force plates. The biomechanical parameters were compared among the four drop conditions using one-way ANOVA of repeated measures. A greater foot inclination angle (p = 0.001, ηp2 = 0.36) at initial contact and a lower vertical loading rate (p = 0.002, ηp2 = 0.32) during the standing phase were found when running in shoes with large drops compared with running in shoes without a drop. Running in shoes with large drops, as opposed to without, significantly increased the peak knee extension moment (p = 0.002, ηp2 = 0.27), but decreased the peak ankle eversion moment (p = 0.001, ηp2 = 0.35). These findings suggest that the heel-to-toe drop of running shoes significantly influences the running pattern and the loading on lower extremity joints. Running shoes with large drops may be disadvantageous for runners with knee weakness and advantageous for runners with ankle weakness.


Author(s):  
Isaac Estevan ◽  
Gonzalo Monfort-Torres ◽  
Roman Farana ◽  
David Zahradnik ◽  
Daniel Jandacka ◽  
...  

(1) Background: Understanding children’s motor patterns in landing is important not only for sport performance but also to prevent lower limb injury. The purpose of this study was to analyze children’s lower limb joint angles and impact force during single-leg landings (SLL) in different types of jumping sports using statistical parametric mapping (SPM). (2) Methods: Thirty children (53.33% girls, M = 10.16 years-old, standard deviation (SD) = 1.52) divided into three groups (gymnastics, volleyball and control) participated in the study. The participants were asked to do SLLs with the dominant lower limb (barefoot) on a force plate from a height of 25 cm. The vertical ground reaction force (GRF) and lower limb joint angles were assessed. SPM{F} one-way analysis of variance (ANOVA) and SPM{t} unpaired t-tests were performed during the landing and stability phases. (3) Results: A significant main effect was found in the landing phase of jumping sport practice in GRF and joint angles. During the stability phase, this effect was exhibited in ankle and knee joint angles. (4) Conclusions: Evidence was obtained of the influence of practicing a specific sport in childhood. Child volleyball players performed SLL with lower impact force and higher knee flexion than child gymnasts. Training in specific jumping sports (i.e., volleyball and gymnastics) could affect the individual capacity to adapt SLL execution.


Sign in / Sign up

Export Citation Format

Share Document