scholarly journals Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets

Author(s):  
Qin Zhang ◽  
Dennis K. Jeppesen ◽  
James N. Higginbotham ◽  
Ramona Graves-Deal ◽  
Vincent Q. Trinh ◽  
...  

AbstractExtracellular vesicles and exomere nanoparticles are under intense investigation as sources of clinically relevant cargo. Here we report the discovery of a distinct extracellular nanoparticle, termed supermere. Supermeres are morphologically distinct from exomeres and display a markedly greater uptake in vivo compared with small extracellular vesicles and exomeres. The protein and RNA composition of supermeres differs from small extracellular vesicles and exomeres. Supermeres are highly enriched with cargo involved in multiple cancers (glycolytic enzymes, TGFBI, miR-1246, MET, GPC1 and AGO2), Alzheimer’s disease (APP) and cardiovascular disease (ACE2, ACE and PCSK9). The majority of extracellular RNA is associated with supermeres rather than small extracellular vesicles and exomeres. Cancer-derived supermeres increase lactate secretion, transfer cetuximab resistance and decrease hepatic lipids and glycogen in vivo. This study identifies a distinct functional nanoparticle replete with potential circulating biomarkers and therapeutic targets for a host of human diseases.

2020 ◽  
Vol 134 (21) ◽  
pp. 2893-2895
Author(s):  
Robert W. Hunter ◽  
Neeraj Dhaun

Abstract We have known for just over a decade that functional RNA is shuttled between cells (Nat. Cell Biol. (2007) 9, 654–659). In that short time, there have been countless reports of extracellular RNA (exRNA) and extracellular vesicles (EVs) participating in diverse biological processes in development (Dev. Cell (2017) 40, 95–103), homoeostasis (Nature (2017) 542, 450–455) and disease (Nature (2017) 546, 498–503). Unsurprisingly – as these disciplines are still in their infancies – most of this work is still in the ‘discovery biology’ phase. However, exRNA and EVs show promise as disease biomarkers and could be harnessed in novel therapies.


2020 ◽  
Vol 245 (10) ◽  
pp. 845-850 ◽  
Author(s):  
Heon-Jin Lee

Extracellular RNAs (exRNAs) are released by extracellular vesicles, small membranous nanoparticles secreted by all cell types. When transported into cells, exRNAs can modulate gene expression or cellular responses in the target cells since many small RNAs have regulatory functions. Indeed, it is widely acknowledged that endogenous exRNAs in the human body are related to various diseases. However, microbial exRNAs have been less studied, and their connection to host diseases has just begun to be explored. In this review, I will discuss analytical methods for exRNAs and the potential use of exRNAs as disease biomarkers. I also consider current progress in understanding the regulation of host mechanisms by microbial exRNAs as inter-kingdom communication, efforts to utilize extracellular vesicles as therapeutic vehicles loaded with engineered RNA cargos, and a putative connection between microbial exRNA-based regulation of host responses and human diseases such as Alzheimer’s. This overview aims to present novel insights into pathogenesis with regard to the function of microbial exRNAs as “disease-relevant travelers.” Impact statement The number of commensal bacteria in the body surpasses the number of actual human cells. Thus, various interactions between microbes and human cells constitute an inevitable phenomenon. Recent evidence has led to bacterial extracellular RNAs (exRNAs) being proposed as good candidates for microbe–host inter-kingdom communication tools as they can modulate the expression of host genes. However, research findings on the relevance of interactions between extracellular RNA and human diseases are still in their infancy. Nevertheless, substantial data suggest that microbial exRNAs are implicated in various human diseases both at local and distant sites. By exploring various scenarios for the involvement of microbial exRNAs in human diseases, we may better understand the role of exRNAs as “communication signals” for diseases and thereby develop novel therapeutic strategies by using them and their carrier extracellular vesicles.


2020 ◽  
Vol 28 ◽  
Author(s):  
Justyna Hajtuch ◽  
Karolina Niska ◽  
Iwona Inkielewicz-Stepniak

Background: Cancer along with cardiovascular diseases are globally defined as leading causes of death. Importantly, some risk factors are common to these diseases. The process of angiogenesis and platelets aggregation are observed in cancer development and progression. In recent years, studies have been conducted on nanodrugs in these diseases that have provided important information on the biological and physicochemical properties of nanoparticles. Their attractive features are that they are made of biocompatible, well-characterized and easily functionalized materials. Unlike conventional drug delivery, sustained and controlled drug release can be obtained by using nanomaterials. Methods: In this article, we review the latest research to provide comprehensive information on nanoparticle-based drugs for the treatment of cancer, cardiovascular disease associated with abnormal haemostasis, and the inhibition of tumorassociated angiogenesis. Results: The results of the analysis of data based on nanoparticles with drugs confirm their improved pharmaceutical and biological properties, which gives promising antiplatelet, anticoagulant and antiangiogenic effects. Moreover, the review included in vitro, in vivo research and presented nanodrugs with chemotherapeutics approved by Food and Drug Administration. Conclusion: By the optimization of nanoparticles size and surface properties, nanotechnology are able to deliver drugs with enhanced bioavailability in treatment of cardiovascular disease, cancer and inhibition of cancer-related angiogenesis. Thus, nanotechnology can improve the therapeutic efficacy of the drug, but there is a need for a better understanding of the nanodrugs interaction in the human body, because this is a key factor in the success of potential nanotherapeutics.


2020 ◽  
Vol 15 (7) ◽  
pp. 623-638
Author(s):  
Saeideh Gholamzadeh Khoei ◽  
Fateme Karimi Dermani ◽  
Sara Malih ◽  
Nashmin Fayazi ◽  
Mohsen Sheykhhasan

Background: Cardiovascular disease (CVD), including disorders of cardiac muscle and vascular, is the major cause of death globally. Many unsuccessful attempts have been made to intervene in the disease's pathogenesis and treatment. Stem cell-based therapies, as a regeneration strategy, cast a new hope for CVD treatment. One of the most well-known stem cells is mesenchymal stem cells (MSCs), classified as one of the adult stem cells and can be obtained from different tissues. These cells have superior properties, such as proliferation and highly specialized differentiation. On the other hand, they have the potential to modulate the immune system and anti-inflammatory activity. One of their most important features is the secreting the extracellular vesicles (EVs) like exosomes (EXOs) as an intercellular communication system mediating the different physiological and pathophysiological affairs. Methods: In this review study, the importance of MSC and its secretory exosomes for the treatment of heart disease has been together and specifically addressed and the use of these promising natural and accessible agents is predicted to replace the current treatment modalities even faster than we imagine. Results: MSC derived EXOs by providing a pro-regenerative condition allowing innate stem cells to repair damaged tissues successfully. As a result, MSCs are considered as the appropriate cellular source in regenerative medicine. In the plethora of experiments, MSCs and MSC-EXOs have been used for the treatment and regeneration of heart diseases and myocardial lesions. Conclusions: Administration of MSCs has been provided a replacement therapeutic option for heart regeneration, obtaining great attention among the basic researcher and the medical doctors.


Author(s):  
John R Burnett ◽  
Samuel D Vasikaran

Atherosclerotic heart disease and osteoporosis are both diseases of old age. Evidence is accumulating for a link between vascular and bone disease. Calcification is a common feature of atherosclerotic plaques, and osteoporosis is associated with both atherosclerosis and vascular calcification. However, the relationship of vascular calcification to the pathogenesis of atherosclerosis remains incompletely understood. Hormone replacement therapy has beneficial effects in the prevention of both atherosclerosis and osteoporosis. Bisphosphonates inhibit bone resorption and are used in the treatment of osteoporosis, whereas the statins inhibit cholesterol biosynthesis and are used for the treatment of atherosclerosis. We have reviewed recent advances in the knowledge of the actions of bisphosphonates and statins at the cellular, molecular and end-organ levels in order to examine the relationship between cardiovascular disease and osteoporosis and to explore the link between lipids and bones. These studies suggest that the mechanism of actions of these two classes of drugs at the cellular level may not be mutually exclusive. There are some early clinical data to complement these findings, suggesting that statins increase bone density and bisphosphonates may have a beneficial effect in vivo on plasma lipid levels and on the atherosclerotic process. Properly designed prospective studies that examine the effect of statins on bone density and fractures, as well as the effects of bisphosphonates on lipid profiles, atherosclerotic progression and cardiovascular morbidity and mortality are needed to define clearly the clinical effects and potential new roles for these agents.


Author(s):  
Mohammad Ghiasloo ◽  
Laura De Wilde ◽  
Kashika Singh ◽  
Patrick Tonnard ◽  
Alexis Verpaele ◽  
...  

Abstract Background Recent evidence confirms that mesenchymal stem cells (MSCs) facilitate angiogenesis mainly through paracrine function. Extracellular vesicles (EVs) are regarded as key components of the cell secretome, possessing functional properties of their source cells. Subsequently, MSC-EVs have emerged as a novel cell-free approach to improve fat graft retention rate. Objectives To provide a systematic review of all studies reporting the use of MSC-EVs to improve graft retention rate. Methods A systematic search was undertaken using the Embase, PubMed and the Cochrane Central Register of Controlled Trials databases. Outcome measures included donor/receptor organism of the fat graft, study model, intervention groups, evaluation intervals, EV research data, in vitro and in vivo results. Results Of the total 1717 articles, 62 full-texts were screened. Seven studies reporting on 294mice were included. Overall, EV treated groups showed higher graft retention rates compared to untreated groups. Notably, retention rate was similar following EV- and MSC-treatment. In addition to reduced inflammation, graft enrichment with EVs resulted in early revascularization and better graft integrity. Interestingly, hypoxic preconditioning of MSCs improved their beneficial paracrine effects and led to a more proangiogenic EV population, as observed by both in vitro and in vivo results. Conclusions MSC-EVs appear to offer an interesting cell-free alternative to improve fat graft survival. While their clinical relevance remains to be determined, it is clear that not the cells, but their secretome is essential for graft survival. Thus, a paradigm shift from cell-assisted lipotransfer towards ‘secretome-assisted lipotransfer’ is well on its way.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 739
Author(s):  
Taeju Park

Crk and CrkL are cellular counterparts of the viral oncoprotein v-Crk. Crk and CrkL are overexpressed in many types of human cancer, correlating with poor prognosis. Furthermore, gene knockdown and knockout of Crk and CrkL in tumor cell lines suppress tumor cell functions, including cell proliferation, transformation, migration, invasion, epithelial-mesenchymal transition, resistance to chemotherapy drugs, and in vivo tumor growth and metastasis. Conversely, overexpression of tumor cells with Crk or CrkL enhances tumor cell functions. Therefore, Crk and CrkL have been proposed as therapeutic targets for cancer treatment. However, it is unclear whether Crk and CrkL make distinct or overlapping contributions to tumor cell functions in various cancer types because Crk or CrkL have been examined independently in most studies. Two recent studies using colorectal cancer and glioblastoma cells clearly demonstrated that Crk and CrkL need to be ablated individually and combined to understand distinct and overlapping roles of the two proteins in cancer. A comprehensive understanding of individual and overlapping roles of Crk and CrkL in tumor cell functions is necessary to develop effective therapeutic strategies. This review systematically discusses crucial functions of Crk and CrkL in tumor cell functions and provides new perspectives on targeting Crk and CrkL in cancer therapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Zhou ◽  
Yang Lin ◽  
Xiuhua Kang ◽  
Zhicheng Liu ◽  
Wei Zhang ◽  
...  

Abstract Background Previous reports have identified that human bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) with their cargo microRNAs (miRNAs) are a promising therapeutic approach for the treatment of idiopathic pulmonary fibrosis (IPF). Therefore, we explored whether delivery of microRNA-186 (miR-186), a downregulated miRNA in IPF, by BMSC EVs could interfere with the progression of IPF in a murine model. Methods In a co-culture system, we assessed whether BMSC-EVs modulated the activation of fibroblasts. We established a mouse model of PF to evaluate the in vivo therapeutic effects of BMSC-EVs and determined miR-186 expression in BMSC-EVs by polymerase chain reaction. Using a loss-of-function approach, we examined how miR-186 delivered by BMSC-EVs affected fibroblasts. The putative relationship between miR-186 and SRY-related HMG box transcription factor 4 (SOX4) was tested using luciferase assay. Next, we investigated whether EV-miR-186 affected fibroblast activation and PF by targeting SOX4 and its downstream gene, Dickkopf-1 (DKK1). Results BMSC-EVs suppressed lung fibroblast activation and delayed IPF progression in mice. miR-186 was downregulated in IPF but enriched in the BMSC-EVs. miR-186 delivered by BMSC-EVs could suppress fibroblast activation. Furthermore, miR-186 reduced the expression of SOX4, a target gene of miR-186, and hence suppressed the expression of DKK1. Finally, EV-delivered miR-186 impaired fibroblast activation and alleviated PF via downregulation of SOX4 and DKK1. Conclusion In conclusion, miR-186 delivered by BMSC-EVs suppressed SOX4 and DKK1 expression, thereby blocking fibroblast activation and ameliorating IPF, thus presenting a novel therapeutic target for IPF.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


Sign in / Sign up

Export Citation Format

Share Document