neuronal maintenance
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 14 ◽  
Author(s):  
Rafaela Policarpo ◽  
Annerieke Sierksma ◽  
Bart De Strooper ◽  
Constantin d’Ydewalle

Recent advances in RNA sequencing technologies helped to uncover the existence of tens of thousands of long non-coding RNAs (lncRNAs) that arise from the dark matter of the genome. These lncRNAs were originally thought to be transcriptional noise but an increasing number of studies demonstrate that these transcripts can modulate protein-coding gene expression by a wide variety of transcriptional and post-transcriptional mechanisms. The spatiotemporal regulation of lncRNA expression is particularly evident in the central nervous system, suggesting that they may directly contribute to specific brain processes, including neurogenesis and cellular homeostasis. Not surprisingly, lncRNAs are therefore gaining attention as putative novel therapeutic targets for disorders of the brain. In this review, we summarize the recent insights into the functions of lncRNAs in the brain, their role in neuronal maintenance, and their potential contribution to disease. We conclude this review by postulating how these RNA molecules can be targeted for the treatment of yet incurable neurological disorders.


2021 ◽  
Author(s):  
Stacey L Peek ◽  
Peter J Bosch ◽  
Ethan Bahl ◽  
Brianna J Iverson ◽  
Mrutyunjaya Parida ◽  
...  

Proper gene regulation is critical for both neuronal development and maintenance as the brain matures. We previously demonstrated that Akirin2, an essential nuclear protein that interacts with transcription factors and chromatin remodeling complexes, is required for the embryonic formation of the cerebral cortex. Here we show that Akirin2 plays a mechanistically distinct role in maintaining healthy neurons during cortical maturation. Restricting Akirin2 loss to excitatory cortical neurons resulted in progressive neurodegeneration via necroptosis and severe cortical atrophy with age. Comparing transcriptomes from Akirin2-null postnatal neurons and cortical progenitors revealed that targets of the tumor suppressor p53, a regulator of both proliferation and cell death encoded by Trp53, were consistently upregulated. Heterozygous deletion of Trp53 rescued neurodegeneration in Akirin2-null neurons. These data: 1) implicate Akirin2 as a critical neuronal maintenance protein; 2) identify p53 pathways as mediators of Akirin2 functions; and 3) suggest Akirin2 dysfunction may be relevant to neurodegenerative diseases.


Genetics ◽  
2021 ◽  
Author(s):  
Virginie E Desse ◽  
Cassandra R Blanchette ◽  
Malika Nadour ◽  
Paola Perrat ◽  
Lise Rivollet ◽  
...  

Abstract Whereas remarkable advances have uncovered mechanisms that drive nervous system assembly, the processes responsible for the lifelong maintenance of nervous system architecture remain poorly understood. Subsequent to its establishment during embryogenesis, neuronal architecture is maintained throughout life in the face of the animal’s growth, maturation processes, the addition of new neurons, body movements, and aging. The C. elegans protein SAX-7, homologous to the vertebrate L1 protein family of neural adhesion molecules, is required for maintaining the organization of neuronal ganglia and fascicles after their successful initial embryonic development. To dissect the function of sax-7 in neuronal maintenance, we generated a null allele and sax-7S-isoform-specific alleles. We find that the null sax-7(qv30) is, in some contexts, more severe than previously described mutant alleles, and that the loss of sax-7S largely phenocopies the null, consistent with sax-7S being the key isoform in neuronal maintenance. Using a sfGFP::SAX-7S knock-in, we observe sax-7S to be predominantly expressed across the nervous system, from embryogenesis to adulthood. Yet, its role in maintaining neuronal organization is ensured by post-developmentally acting SAX-7S, as larval transgenic sax-7S(+) expression alone is sufficient to profoundly rescue the null mutants' neuronal maintenance defects. Moreover, the majority of the protein SAX-7 appears to be cleaved, and we show that these cleaved SAX-7S fragments together, not individually, can fully support neuronal maintenance. These findings contribute to our understanding of the role of the conserved protein SAX-7/L1CAM in long-term neuronal maintenance, and may help decipher processes that go awry in some neurodegenerative conditions.


2021 ◽  
Author(s):  
V.E. Desse ◽  
C.R. Blanchette ◽  
P. Perrat ◽  
C.Y. Bénard

ABSTRACTWhereas remarkable advances have uncovered mechanisms that drive nervous system assembly, the processes responsible for the lifelong maintenance of nervous system architecture remain poorly understood. Subsequent to its establishment during embryogenesis, neuronal architecture is maintained throughout life in the face of the animal’s growth, maturation processes, the addition of new neurons, body movements, and aging. The C. elegans protein SAX-7, homologous to the vertebrate L1 protein family, is required for maintaining the organization of neuronal ganglia and fascicles after their successful initial embryonic development. To dissect the function of sax-7 in neuronal maintenance, we generated a null allele and sax-7S-isoform-specific alleles. We find that the null sax-7(qv30) is, in some contexts, more severe than previously described mutant alleles, and that the loss of sax-7S largely phenocopies the null, consistent with sax-7S being the key isoform in neuronal maintenance. Using a sfGFP::SAX-7S knock-in, we observe sax-7S to be predominantly expressed across the nervous system, from embryogenesis to adulthood. Yet, its role in maintaining neuronal organization is ensured by post-developmentally acting SAX-7S, as larval transgenic sax-7S(+) expression alone is sufficient to profoundly rescue the null mutants’ neuronal maintenance defects. Moreover, the majority of the protein SAX-7 appears to be cleaved, and we show that these cleaved SAX-7S fragments together, not individually, can fully support neuronal maintenance. These findings contribute to our understanding of the role of the conserved protein SAX-7/L1CAM in long-term neuronal maintenance, and may help decipher processes that go awry in some neurodegenerative conditions.


2020 ◽  
Author(s):  
Chen-Yi Wu ◽  
Jhih-Gang Jhang ◽  
Chih-Wei Lin ◽  
Han-Chen Ho ◽  
Chih-Chiang Chan ◽  
...  

ABSTRACTExosomes play important roles in the nervous system. Mutations in the human dihydroceramide desaturase gene, DEGS1, are recently linked to severe neurological disorders, but the cause remains unknown. Here, we show that Ifc is required for the morphology and function of Drosophila photoreceptor neurons and not in the surrounding glia, but the degeneration of ifc-KO eyes can be rescued by glial expression of ifc, possibly mediated by exosomes. We develop an in vivo assay using Drosophila eye imaginal discs and show that the level and activity of Ifc correlates with the detection of exosome-like vesicles. While ifc overexpression and autophagy inhibition both enhances exosome production, combining the two had no additive effect. Moreover, ifc-KO reduces the density of the exosome precursor intraluminal vesicles (ILVs) in vivo, and DEGS1 promotes ILV formation in vitro. In conclusion, dihydroceramide desaturase promotes exosome formation and prevents its autophagic degradation in the nervous system.


2020 ◽  
Vol 48 (5) ◽  
pp. 2261-2272 ◽  
Author(s):  
Mintu Chandra ◽  
Amy K. Kendall ◽  
Lauren P. Jackson

Retromer (VPS26/VPS35/VPS29) is a highly conserved eukaryotic protein complex that localizes to endosomes to sort transmembrane protein cargoes into vesicles and elongated tubules. Retromer mediates retrieval pathways from endosomes to the trans-Golgi network in all eukaryotes and further facilitates recycling pathways to the plasma membrane in metazoans. In cells, retromer engages multiple partners to orchestrate the formation of tubulovesicular structures, including sorting nexin (SNX) proteins, cargo adaptors, GTPases, regulators, and actin remodeling proteins. Retromer-mediated pathways are especially important for sorting cargoes required for neuronal maintenance, which links retromer loss or mutations to multiple human brain diseases and disorders. Structural and biochemical studies have long contributed to the understanding of retromer biology, but recent advances in cryo-electron microscopy and cryo-electron tomography have further uncovered exciting new snapshots of reconstituted retromer structures. These new structures reveal retromer assembles into an arch-shaped scaffold and suggest the scaffold may be flexible and adaptable in cells. Interactions with cargo adaptors, particularly SNXs, likely orient the scaffold with respect to phosphatidylinositol-3-phosphate (PtdIns3P)-enriched membranes. Pharmacological small molecule chaperones have further been shown to stabilize retromer in cultured cell and mouse models, but mechanisms by which these molecules bind remain unknown. This review will emphasize recent structural and biophysical advances in understanding retromer structure as the field moves towards a molecular view of retromer assembly and regulation on membranes.


2020 ◽  
Vol 2 (1) ◽  
pp. 54-59
Author(s):  
Alexandra Brahmer ◽  
Eva-Maria Krämer-Albers

Physical and mental activity are known to contribute to brain health and overall longevity. Extracellular vesicles (EVs) have attracted attention for their ability to transport bioactive cargo through various body-fluids and their role in tissue crosstalk and regeneration. Targeted intercellular communication processes, including those facilitated by EVs, are of vital importance for the complex architecture and function of the brain. Activated neurons trigger the transfer of EVs from myelinating oligodendrocytes to neurons, promoting neuronal long-term maintenance and survival. Likewise, physical activity leads to the liberation of EVs into the circulation, while the molecular link between physical activity and neural performance is not yet fully understood. Interestingly, there are indications that EVs might be able to overcome the blood-brain-barrier and affect neuronal cells. Here, we discuss the ability of EVs to “storm the brain” in response to neural and physical activity in benefit of well-being and sustained brain health. Keywords: oligodendrocytes, neuron-glia interaction, extracellular vesicles, physical exercise, neuronal maintenance, neuroprotection


2019 ◽  
Author(s):  
Grace Ji-eun Shin ◽  
Maria Elena Pero ◽  
Luke A. Hammond ◽  
Anita Burgos ◽  
Samantha E. Galindo ◽  
...  

SummaryChemotherapy induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN primarily affects unmyelinated nociceptive sensory terminals. Despite the high prevalence of CIPN, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractable Drosophila model and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment of Drosophila larvae with paclitaxel caused sensory neuron degeneration, altered the terminal branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-mediated cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. We used primary dorsal root ganglia neuron cultures to test conservation of integrin-mediated protection. We show that overexpression of a human integrin β subunit 1 (ITGB1) also prevented degeneration following paclitaxel treatment. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring integrin levels to antagonize paclitaxel-mediated toxicity in sensory neurons.


2019 ◽  
Vol 17 ◽  
pp. 374-387 ◽  
Author(s):  
Joan Pallarès-Albanell ◽  
M. Teresa Zomeño-Abellán ◽  
Georgia Escaramís ◽  
Lorena Pantano ◽  
Aroa Soriano ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 3725 ◽  
Author(s):  
Karina Sánchez-Alegría ◽  
Manuel Flores-León ◽  
Evangelina Avila-Muñoz ◽  
Nelly Rodríguez-Corona ◽  
Clorinda Arias

Phosphoinositide 3-kinase (PI3K) signaling contributes to a variety of processes, mediating many aspects of cellular function, including nutrient uptake, anabolic reactions, cell growth, proliferation, and survival. Less is known regarding its critical role in neuronal physiology, neuronal metabolism, tissue homeostasis, and the control of gene expression in the central nervous system in healthy and diseased states. The aim of the present work is to review cumulative evidence regarding the participation of PI3K pathways in neuronal function, focusing on their role in neuronal metabolism and transcriptional regulation of genes involved in neuronal maintenance and plasticity or on the expression of pathological hallmarks associated with neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document