scholarly journals A Mechanosensitive Channel, Mouse Transmembrane Channel-Like Protein 1 (mTMC1) Is Translated from a Splice Variant mTmc1ex1 but Not from the Other Variant mTmc1ex2

2020 ◽  
Vol 21 (18) ◽  
pp. 6465
Author(s):  
Soichiro Yamaguchi ◽  
Maho Hamamura ◽  
Ken-ichi Otsuguro

Mechanical stimuli caused by sound waves are detected by hair cells in the cochlea through the opening of mechanoelectrical transduction (MET) channels. Transmembrane channel-like protein 1 (TMC1) has been revealed to be the pore-forming component of the MET channel. The two splice variants for mouse Tmc1 (mTmc1ex1 and mTmc1ex2) were reported to be expressed in the cochlea of infant mice, though only the sequence of mTmc1ex2 had been deposited in GenBank. However, due to the presence of an upstream open reading frame (uORF) and the absence of a typical Kozak sequence in mTmc1ex2, we questioned whether mTMC1 was translated from mTmc1ex2. Therefore, in this study, we evaluated which splice variant was protein-coding mRNA. Firstly, the results of RT-PCR and cDNA cloning of mTmc1 using mRNA isolated from the cochlea of five-week-old mice suggested that more Tmc1ex1 were expressed than mTmc1ex2. Secondly, mTMC1 was translated from mTmc1ex1 but not from mTmc1ex2 in a heterologous expression system. Finally, analyses using site-directed mutagenesis revealed that the uORF and the weak Kozak sequence in mTmc1ex2 prevented the translation of mTMC1 from mTmc1ex2. These results suggest that mTmc1ex1 plays a main role in the expression of mTMC1 in the mouse cochlea, and therefore, mTmc1ex1 should be the mRNA for mTMC1 hereafter.

Botany ◽  
2013 ◽  
Vol 91 (12) ◽  
pp. 840-849 ◽  
Author(s):  
Joshua Powles ◽  
Katharine Sedivy-Haley ◽  
Eric Chapman ◽  
Kenton Ko

Rhomboid serine proteases are grouped into three main types — secretases, presenilin-like associated rhomboid-like (PARL) proteases, and “inactive” rhomboid proteins. Although the three rhomboid groups are distinct, the different types are likely to operate within the same cell or compartment, such as observed in the plastids of Arabidopsis. There are four distinct plastid rhomboid genes at play in Arabidopsis plastids, two for active types (At1g25290 and At5g25752) and two for inactive forms (At1g74130 and At1g74140). The number of working plastid rhomboids is further increased by alternative splicing, as reported for At1g25290. To understand how the plastid rhomboid system works, it is necessary to identify all rhomboid forms in play. To this end, this study was designed to examine the alternative splicing activities of At1g74130, one of the two genes encoding proteolytically “inactive” plastid rhomboids. The exon mapping and DNA sequencing results obtained here indicate the presence of three prominent alternative splice variants in the At1g74130 transcript population. The dominant splice variant, L, encodes the full-length protein. The other two splice variants, M and S, produce proteins lacking sections from the carboxyl transmembrane domain region. The splice variants M and S appear to be at levels with functional potential and appear to adjust relative to each other during development and in response to changes in the level of Tic40, a component of the plastid translocon. The splice variant proteins themselves exhibit different characteristics with respect to rhomboid protein–substrate interactions. These differences were observed in bacterial co-expression pull-down assays and in yeast mitochondrial studies. When considered together, the data suggest that the alternative splicing of At1g74130 bears functional significance in Arabidopsis and is likely to be part of a mechanism for diversifying plastid rhomboid function.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 35-35
Author(s):  
Sara L. Seegers ◽  
Amanda Lance ◽  
Lawrence J Druhan ◽  
Belinda R Avalos

CSF3R, the receptors for granulocyte colony stimulating factor, is a critical regulator of neutrophil production. Multiple CSF3R mRNA transcripts have been identified and are annotated in Genbank. The expression and function of the different CSF3R proteins have not been fully elucidated. We generated antibodies specific for two of the identified and annotated isoforms, V3 and V4. CSF3R-V4 is a truncated variant of V1 with a unique C-terminal 34 amino acids and this variant confers enhanced growth signals. Changes in the ratio of V1:V4 isoforms have been implicated in chemotherapy resistance and relapse of AML. CSF3R-V3 is a variant of V1 with a 27 amino acid insertion between two conserved domains in the cytoplasmic portion of the receptor involved in JAK/STAT activation, termed the box 1 and box 2. CSF3R-V3 produces reduced proliferative signaling in response to G-CSF. When V3 is co-expressed with V1, proliferative signaling is reduced in a concentration dependent manner. In order to generate custom rabbit polyclonal antibodies specific for CSF3R-V3 and CSF3R-V4 we used either a peptide that corresponds to a unique amino acid sequence present only in CSF3R-V3 or a peptide specific for a portion of the C-terminal amino acid sequence unique to the CSF3R-V4 isoform conjugated to an immunogenic carrier protein. These immunogens both produced robust immune responses, and the polyclonal antibodies were subsequently purified from bulk sera. Immunoblot analysis of lysates from Ba/F3 cells expressing CSF3R-V1 (V1), CSF3R-V3 (V3), or CSF3R-V4 (V4) demonstrated that both the custom generated anti-CSF3R-V3 and anti-CSF3R-V4 antibodies were very specific, recognizing only the appropriate CSF3R receptor isoform. All three CSF3R splice variants are recognized by commercially available anti-CSF3R (clone LMM741 to CD114), while the anti-CSF3R-V4 custom antibody and the custom anti-CSF3R-V3 antibody recognizes only the CSF3R-V4 and CSF3R-V3 isoforms, respectively. We next sought to detect the CSF3R receptor isoforms in primary human cells. Using our custom antibodies, we detected for the first time, both the CSF3R-V3 and CSF3R-V4 receptor forms in primary neutrophils isolated from healthy donors. Each of the CSF3R isoforms produce unique signaling, and we hypothesized that the observed differences in G-CSF-dependent signaling is produced by the expression level of each receptor isoform via both homodimerization and by heterodimerization of the receptor splice variant proteins. To investigate the potential for heterodimerization of the CSF3R-V1 with the V3 and V4 isoforms, we generated a CSF3R-V1 with a c-terminal epitope tag and co-expressed this construct with both CSF3R-V3 or CSF3R-V4. Immunoprecipitation with an antibody to the epitope tag (recognizing the V1 variant) followed by immunoblotting with the custom anti-V3 or anti-V4 antibodies demonstrated that both CSF3R-V3 and CSF3R-V4 co-immunoprecipitated with CSF3R-V1, in agreement with our hypothesis that the splice variants form receptor heterodimers. Of note, the CSF3R receptor heterodimers are detected even in the absence of G-CSF, thus demonstrating that CSF3R exist as a preformed receptor dimer in an inactive state. In conclusion, we have generated antibodies that specifically detect the CSF3R-V3 and the CSF3R-V4 receptor proteins. These are the first studies to demonstrate the expression of the CSF3R splice variants at the protein level, in both cell lines and primary human cells. In addition, these are the first studies to demonstrate the formation of heterodimers of the CSF3R splice variants, providing a mechanism for the observed alteration in ligand-dependent signaling produced under conditions of altered splice variant expression. Disclosures Avalos: Juno: Membership on an entity's Board of Directors or advisory committees; Best Practice-Br Med J: Patents & Royalties: receives royalties from a coauthored article on evaluation of neutropenia.


The role of the co-transported cation in the coupling mechanism of the melibiose permease of Escherichia coli has been investigated by analysing its sugar-binding activity, facilitated diffusion reactions and energy-dependent transport reactions catalysed by the carrier functioning either as an H + , Na + or Li + -sugar symporter. The results suggest that the coupling cation not only acts as an activator for sugar-binding on the carrier but also regulates the rate of dissociation of the co-substrates in the cytoplasm by controlling the stability of the ternary complex cation-sugar—carrier facing the cell interior. Furthermore, there is some evidence that the membrane potential enhances the rate of symport activity by increasing the rate of dissociation of the co-substrates from the carrier in the cellular compartment. Identification of the melibiose permease as a membrane protein of 39 kDa by using a T7 RNA polymerase/promoter expression system is described. Site-directed mutagenesis has been used to replace individual carrier histidine residues by arginine to probe the functional contribution of each of the seven histidine residues to the symport mechanism. Only substitution of arginine for His94 greatly interferes with the carrier function. It is finally shown that mutations affecting the glutamate residue in position 361 inactivate translocation of the co-substrates but not their recognition by the permease.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Roghayyeh Baghban ◽  
Safar Farajnia ◽  
Younes Ghasemi ◽  
Reyhaneh Hoseinpoor ◽  
Azam Safary ◽  
...  

Abstract Background Ocriplasmin (Jetrea) is using for the treatment of symptomatic vitreomacular adhesion. This enzyme undergoes rapid inactivation and limited activity duration as a result of its autolytic nature after injection within the eye. Moreover, the proteolytic activity can cause photoreceptor damage, which may result in visual impairment in more serious cases. Results The present research aimed to reduce the disadvantages of ocriplasmin using site-directed mutagenesis. To reduce the autolytic activity of ocriplasmin in the first variant, lysine 156 changed to glutamic acid and, in the second variant for the proteolytic activity reduction, alanine 59 mutated to threonine. The third variant contained both mutations. Expression of wild type and three mutant variants of ocriplasmin constructs were done in the Pichia pastoris expression system. The mutant variants were analyzed in silico and in vitro and compared to the wild type. The kinetic parameters of ocriplasmin variants showed both variants with K156E substitution were more resistant to autolytic degradation than wild-type. These variants also exhibited reduced Kcat and Vmax values. An increase in their Km values, leading to a decreased catalytic efficiency (the Kcat/Km ratio) of autolytic and mixed variants. Moreover, in the variant with A59T mutation, Kcat and Vmax values have reduced compared to wild type. The mix variants showed the most increase in Km value (almost 2-fold) as well as reduced enzymatic affinity to the substrate. Thus, the results indicated that combined mutations at the ocriplasmin sequence were more effective compared with single mutations. Conclusions The results indicated such variants represent valuable tools for the investigation of therapeutic strategies aiming at the non-surgical resolution of vitreomacular adhesion.


Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 2053-2063 ◽  
Author(s):  
Julie A. Peterson ◽  
Gian P. Visentin ◽  
Peter J. Newman ◽  
Richard H. Aster

Abstract The IIb-IIIa glycoprotein complex is a favored target for allo-, auto-, and drug-dependent antibodies associated with immune thrombocytopenia. A soluble, recombinant form of the GPIIb-IIIa heterodimer that could be produced in large quantities and maintained in solution without detergent could provide a useful experimental tool for the study of platelet-reactive antibodies, but previous attempts to produce such a construct have yielded only small quantities of the end product. Using a baculovirus expression system and the dual-promoter transfer vector P2Bac, we were able to express soluble GPIIb-IIIa complex (srGPIIb-IIIa) lacking cytoplasmic and transmembrane domains in quantities of about 1,000 μg/L, about 40 times greater than reported previously. The high yield achieved may be related to inclusion of the entire extracellular region of the GPIIb light chain in the construct. srGPIIb-IIIa reacts spontaneously with fibrinogen, and this interaction is totally inhibited by the peptide RGDS. Reactions of 24 GPIIb-IIIa–specific antibodies evaluated (12 monoclonal, 3 allo-specific, 3 auto-specific, and 6 drug-dependent) with srGPIIb-IIIa were indistinguishable from reactions with platelet GPIIb-IIIa. Thus, srGPIIb-IIIa spontaneously assumes an active, ligand-binding conformation and contains epitopes for all monoclonal and human antibodies tested to date. srGPIIb-IIIa can be produced in large quantities, can readily be modified by site-directed mutagenesis, and should facilitate identification of epitopes recognized by GPIIb-IIIa–specific antibodies, study of the mechanism(s) by which certain drugs promote antibody binding to GPIIb-IIIa in drug-induced thrombocytopenia and structure-function relationships of GPIIb-IIIa. © 1998 by The American Society of Hematology.


Blood ◽  
1996 ◽  
Vol 88 (9) ◽  
pp. 3371-3382 ◽  
Author(s):  
T McClanahan ◽  
J Culpepper ◽  
D Campbell ◽  
J Wagner ◽  
K Franz-Bacon ◽  
...  

We have performed a comprehensive analysis of cell lines and tissues to compare and contrast the expression patterns of Flt3 ligand (FL), c-Kit ligand (KL), and macrophage colony-stimulating factor as well as their receptors, Flt3, c-Kit, and c-Fms. The message for FL is unusually ubiquitous, whereas that of its receptor is quite restricted, apparently limiting the function of the ligand to fetal development and early hematopoiesis. We have also sequenced a mouse FL genomic clone, revealing how the three splice variant FL mRNAs that we have isolated arise. The chromosomal location of the FL gene has been mapped, by in situ hybridization, to chromosome 7 in mouse and chromosome 19 in human. Natural FL protein has been purified from a stromal cell line and shown to be a 65 kD nondisulfide-linked homodimeric glycoprotein comprised of 30 kD subunits, each containing 12 kD of N- and O-linked sugars. Pulse-chase experiments show that one of the splice variants (T110) is responsible for producing the bulk of soluble FL, but only after it has first been expressed at the cell surface as a membrane-bound form. The other splice-variant forms produce molecules that are either obligatorily soluble (T169) or membrane-bound but released only very slowly (T118). Finally, even though most cell lines express some amount of FL mRNA, we found that very little FL protein is actually made, with T cells and stromal cells being the major producers. The data suggests that FL plays its roles over very short distances, perhaps requiring cell-cell contact.


2007 ◽  
Vol 53 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Eleni Mavrogiannou ◽  
Areti Strati ◽  
Aliki Stathopoulou ◽  
Emily G Tsaroucha ◽  
Loukas Kaklamanis ◽  
...  

Abstract Background: We developed and validated a real-time reverse transcription (RT)–PCR for the quantification of 4 individual human telomerase reverse transcriptase (TERT) splice variants (α+β+, α−β+, α+β−, α−β−) in tumor cell lines and non–small cell lung cancer (NSCLC). Methods: We used in silico designed primers and a common TaqMan probe for highly specific amplification of each TERT splice variant, PCR transcript–specific DNA external standards as calibrators, and the MCF-7 cell line for the development and validation of the method. We then quantified TERT splice variants in 6 tumor cell lines and telomerase activity and TERT splice variant expression in cancerous and paired noncancerous tissue samples from 28 NSCLC patients. Results: In most tumor cell lines, we observed little variation in the proportion of TERT splice variants. The α+β− splice variant showed the highest expression and α−β+ and α−β− the lowest. Quantification of the 4 TERT splice variants in NSCLC and surrounding nonneoplastic tissues showed the highest expression percentage for the α+β− variant in both NSCLC and adjacent nonneoplastic tissue samples, followed by α+β+, with the α−β+ and α−β− splice variants having the lowest expression. In the NSCLC tumors, the α+β+ variant had higher expression than other splice variants, and its expression correlated with telomerase activity, overall survival, and disease-free survival. Conclusions: Real-time RT-PCR quantification is a specific, sensitive, and rapid method that can elucidate the biological role of TERT splice variants in tumor development and progression. Our results suggest that the expression of the TERT α+β+ splice variant may be an independent negative prognostic factor for NSCLC patients.


Microbiology ◽  
2000 ◽  
Vol 81 (1) ◽  
pp. 195-199 ◽  
Author(s):  
Yuichi Matsuura ◽  
Yukinobu Tohya ◽  
Mihoko Onuma ◽  
Frank Roerink ◽  
Masami Mochizuki ◽  
...  

The ORF2 product of canine calicivirus (CaCV) was identified and its processing in mammalian cells was analysed. Immunoblot analysis revealed the presence of the 75 kDa capsid precursor in addition to a 57 kDa capsid protein and a 22 kDa N-terminal polypeptide in CaCV-infected cells treated at an elevated temperature. When the CaCV ORF2 was expressed in a transient mammalian expression system, only the 75 kDa precursor was detected in immunoblot analysis, suggesting that no post-translational processing occurred in this system. However, the precursor was processed to a 57 kDa protein and a 22 kDa polypeptide by the proteinase of feline calicivirus (FCV) when this was co-expressed with ORF2. Processing was blocked by site-directed mutagenesis of the putative cleavage site in the capsid precursor. The results indicate that the proteinase of FCV can cleave the capsid precursor of CaCV to produce the mature capsid protein and that CaCV may have a similar proteinase.


2000 ◽  
Vol 279 (4) ◽  
pp. C1198-C1210 ◽  
Author(s):  
L. Pablo Cid ◽  
María-Isabel Niemeyer ◽  
Alfredo Ramírez ◽  
Francisco V. Sepúlveda

We identified two ClC-2 clones in a guinea pig intestinal epithelial cDNA library, one of which carries a 30-bp deletion in the NH2 terminus. PCR using primers encompassing the deletion gave two products that furthermore were amplified with specific primers confirming their authenticity. The corresponding genomic DNA sequence gave a structure of three exons and two introns. An internal donor site occurring within one of the exons accounts for the deletion, consistent with alternative splicing. Expression of the variants gpClC-2 and gpClC-2Δ77–86 in HEK-293 cells generated inwardly rectifying chloride currents with similar activation characteristics. Deactivation, however, occurred with faster kinetics in gpClC-2Δ77–86. Site-directed mutagenesis suggests that a protein kinase C-mediated phosphorylation consensus site lost in gpClC-2Δ77–86 is not responsible for the observed change. The deletion-carrying variant is found in most tissues examined, and it appears more abundant in proximal colon, kidney, and testis. The presence of a splice variant of ClC-2 modified in its NH2-terminal domain could have functional consequences in tissues where their relative expression levels are different.


Sign in / Sign up

Export Citation Format

Share Document