Parametric Study on Ported Shroud Locations and Geometries for a Turbocharger Compressor

Author(s):  
Suheab Thamizullah ◽  
Abdul Nassar ◽  
Antonio Davis ◽  
Gaurav Giri ◽  
Leonid Moroz

Abstract Turbochargers are commonly used in automotive engines to increase the internal combustion engine performance during off-design operating conditions. When used, the widest operating range for the turbocharger is desired, which is limited on the compressor side by the choke condition and the surge phenomenon. The ported shroud technology is used to extend the operable working range of the compressor, by permitting flow disturbances that block the blade passage to escape and stream back through the shroud cavity to the compressor inlet. The impact of this technology, on a speed-line, at near optimal operating condition, near choke operating condition and near surge operating condition is investigated. The ported shroud (PS) self-recirculating casing treatment is widely used to delay the onset of surge by enhancing the aerodynamic stability of the turbocharger compressor. While the ported shroud design delays surge, it usually comes with a small penalty in efficiency. This research involves designing a single-stage centrifugal compressor for the given specifications, considering the application of an automotive turbocharger. The ported shroud was then introduced in the centrifugal compressor. The performance characteristics were obtained, both at the design and at off-design conditions, both with and without the ported shroud. The performance was compared at various off-design operating speed lines. The entire study, from designing the compressor to optimizing the ported shroud configuration, was performed using the commercial AxSTREAM® software platform. Parametric studies were performed to study the effect of ported shroud axial location along the blade axial length on the operating range and performance. The baseline design, without the ported shroud (P0), and the final geometry with it for all PS inlet axial locations (P1 to P5) were analysed using a commercial CFD package and the results were compared with those from the streamline solver.

Author(s):  
Sidharath Sharma ◽  
Jorge García-Tíscar ◽  
John M. Allport ◽  
Martyn L. Jupp ◽  
Ambrose K. Nickson

Ported shroud casing treatment is widely used to delay the onset of surge and thereby enhancing the aerodynamic stability of a centrifugal compressor by recirculating the low momentum fluid in the blade passage. Performance losses associated with the use of recirculation casing treatment are well established in the literature and this is an area of active research. The other, less researched aspect of the casing treatment is its impact on the acoustics of the compressor. This work investigates the impact of ported shroud casing treatment on the acoustic characteristics of the compressor. The flow in two compressor configurations viz. with and without casing treatment operating at the design operating conditions of an iso-speed line are numerically modelled and validated with experimental data from gas stand measurements. The pressure fluctuations calculated as the flow solution are used to compute the spectral signatures at multiple locations to investigate the acoustic phenomenon associated with each configuration. Propagation of the frequency content through the ducts has been estimated with the aid of method of characteristics to enhance the content coming from the compressor. Expected tonal aerodynamic noise sources such as monopole (buzz-saw tones) and dipole (Blade Pass Frequency) are clearly identified in the acoustic spectra of the two configurations. The comparison of two configurations shows higher overall levels and tonal content in the case of a compressor with ported shroud operating at design conditions due to the presence of ‘mid-tones’.


2021 ◽  
pp. 146808742110464
Author(s):  
Yang Hua

Ether and ester fuels can work in the existing internal combustion (IC) engine with some important advantages. This work comprehensively reviews and summarizes the literatures on ether fuels represented by DME, DEE, DBE, DGM, and DMM, and ester fuels represented by DMC and biodiesel from three aspects of properties, production and engine application, so as to prove their feasibility and prospects as alternative fuels for compression ignition (CI) and spark ignition (SI) engines. These studies cover the effects of ether and ester fuels applied in the form of single fuel, mixed fuel, dual-fuel, and multi-fuel on engine performance, combustion and emission characteristics. The evaluation indexes mainly include torque, power, BTE, BSFC, ignition delay, heat release rate, pressure rise rate, combustion duration, exhaust gas temperature, CO, HC, NOx, PM, and smoke. The results show that ethers and esters have varying degrees of impact on engine performance, combustion and emissions. They can basically improve the thermal efficiency of the engine and reduce particulate emissions, but their effects on power, fuel consumption, combustion process, and CO, HC, and NOx emissions are uncertain, which is due to the coupling of operating conditions, fuel molecular structure, in-cylinder environment and application methods. By changing the injection strategy, adjusting the EGR rate, adopting a new combustion mode, adding improvers or synergizing multiple fuels, adverse effects can be avoided and the benefits of oxygenated fuel can be maximized. Finally, some challenges faced by alternative fuels and future research directions are analyzed.


Author(s):  
Swati Saxena ◽  
Ramakrishna Mallina ◽  
Francisco Moraga ◽  
Douglas Hofer

This paper is presented in two parts. Part I (Tabular fluid properties for real gas analysis) describes an approach to creating a tabular representation of the equation of state that is applicable to any fluid. This approach is applied to generating an accurate and robust tabular representation of the RefProp CO2 properties. Part II (this paper) presents numerical simulations of a low flow coefficient supercritical CO2 centrifugal compressor developed for a closed loop power cycle. The real gas tables presented in part I are used in these simulations. Three operating conditions are simulated near the CO2 critical point: normal day (85 bar, 35C), hot day (105 bar, 50 C) and cold day (70 bar, 20C) conditions. The compressor is a single stage overhung design with shrouded impeller, 155 mm impeller tip diameter and a vaneless diffuser. An axial variable inlet guide vane (IGV) is used to control the incoming swirl into the impeller. An in-house three-dimensional computational fluid dynamics (CFD) solver named TACOMA is used with real gas tables for the steady flow simulations. The equilibrium thermodynamic modeling is used in this study. The real gas effects are important in the desired impeller operating range. It is observed that both the operating range (minimum and maximum volumetric flow rate) and the pressure ratio across the impeller are dependent on the inlet conditions. The compressor has nearly 25% higher operating range on a hot day as compared to the normal day conditions. A condensation region is observed near the impeller leading edge which grows as the compressor operating point moves towards choke. The impeller chokes near the mid-chord due to lower speed of sound in the liquid-vapor region resulting in a sharp drop near the choke side of the speedline. This behavior is explained by analyzing the 3D flow field within the impeller and thermodynamic quantities along the streamline. The 3D flow analysis for the flow near the critical point provides useful insight for the designers to modify the current compressor design for higher efficiency.


Author(s):  
Timothy C. Allison ◽  
Natalie R. Smith ◽  
Robert Pelton ◽  
Jason C. Wilkes ◽  
Sewoong Jung

Successful implementation of sCO2 power cycles requires high compressor efficiency at both the design-point and over a wide operating range in order to maximize cycle power output and maintain stable operation over a wide range of transient and part-load operating conditions. This requirement is particularly true for air-cooled cycles where compressor inlet density is a strong function of inlet temperature that is subject to daily and seasonal variations as well as transient events. In order to meet these requirements, a novel centrifugal compressor stage design was developed that incorporates multiple novel range extension features, including a passive recirculating casing treatment and semi-open impeller design. This design, presented and analyzed for CO2 operation in a previous paper, was fabricated via direct metal laser sintering and tested in an open-loop test rig in order to validate simulation results and the effectiveness of the casing treatment configuration. Predicted performance curves in air and CO2 conditions are compared, resulting in a reduced diffuser width requirement for the air test in order to match design velocities and demonstrate the casing treatment. Test results show that the casing treatment performance generally matched computational fluid dynamics (CFD) predictions, demonstrating an operating range of 69% and efficiency above air predictions across the entire map. The casing treatment configuration demonstrated improvements over the solid wall configuration in stage performance and flow characteristics at low flows, resulting in an effective 14% increase in operating range with a 0.5-point efficiency penalty. The test results are also compared to a traditional fully shrouded impeller with the same flow coefficient and similar head coefficient, showing a 42% range improvement over traditional designs.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Ismail Sezal ◽  
Nan Chen ◽  
Christian Aalburg ◽  
Rajesh Kumar V. Gadamsetty ◽  
Wolfgang Erhard ◽  
...  

In the oil and gas industry, large variations in flow rates are often encountered, which require compression trains with a wide operating range. If the stable operating range at constant speed is insufficient, variable speed drivers can be used to meet the requirements. Alternatively, variable inlet guide vanes (IGVs) can be introduced into the inlet plenum to provide pre- or counterswirl to the first-stage impeller, possibly eliminating the need for variable speed. This paper presents the development and validation of circumferentially nonuniform IGVs that were specifically designed to provide maximum angle variation at minimum losses and flow distortion for the downstream impeller. This includes the comparison of three concepts: a baseline design based on circumferentially uniform and symmetric profiles, two circumferentially nonuniform concepts based on uniquely cambered airfoils at each circumferential position, and a multi-airfoil configuration consisting of a uniquely cambered fixed part and a movable part. The idea behind the circumferentially nonuniform designs was to take into account nonsymmetric flow features inside the plenum and a bias toward large preswirl angles rather than counter-swirl during practical operation. The designs were carried out by computational fluid dynamics (CFD) and first tested in a steady, full-annulus cascade in order to quantify pressure losses and flow quality at the inlet to the impeller at different IGV setting angles (ranging from −20 deg to +60 deg) and flow rates. Subsequently, the designs were mounted in front of a typical oil and gas impeller on a high-speed rotating rig in order to determine the impact of flow distortion on the impeller performance. The results show that pressure losses in the inlet plenum could be reduced by up to 40% with the circumferentially nonuniform designs over the symmetric baseline configuration. Furthermore, a significant reduction in circumferential distortion could be achieved with the circumferentially nonuniform designs. The resulting improvement in impeller performance contributed approximately 40% to the overall efficiency gains for inlet plenum and impeller combined.


Author(s):  
Ziliang Li ◽  
Xingen Lu ◽  
Ge Han ◽  
Yanfeng Zhang ◽  
Shengfeng Zhao ◽  
...  

Centrifugal compressors often suffer relatively low efficiency and a terrible operating range particularly due to the complex flow structure and intense impeller/diffuser interaction. Numerous studies have focused on improving the centrifugal compressor performance using many innovative ideas, such as the tandem impeller, which has become increasingly attractive due to its ability to achieve the flow control with no additional air supply configurations and control costs in compressor. However, few studies that attempted to the investigation of tandem impeller have been published until now and the results are always contradictory. To explore the potential of the tandem impeller to enhance the compressor performance and the underlying mechanism of the flow phenomena in the tandem impellers, this paper numerically investigated a high-pressure-ratio centrifugal compressor with several tandem impellers at off-design operating speeds. The results encouragingly demonstrate that the tandem impeller can achieve a performance enhancement over a wide range of operating conditions. Approximately 1.8% maximum enhancement in isentropic efficiency and 5.0% maximum enhancement in operating range are achieved with the inducer/exducer circumferential displacement of [Formula: see text] = 25% and 50%, respectively. The observed stage performance gain of the tandem impellers decreases when the operating speed increases due to the increased inducer shock, increased wake losses, and deteriorated tandem impeller discharge flow uniformity. In addition, the tandem impeller can extend the impeller operating range particularly at low rotation speeds, which is found to be a result from the suppression of the low-momentum fluid radial movement. The results also indicate that the maximum flux capacity of the tandem impeller decreases due to the restriction of the inducer airfoil Kutta–Joukowsky condition.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Uyioghosa Igie ◽  
Pericles Pilidis ◽  
Dimitrios Fouflias ◽  
Kenneth Ramsden ◽  
Panagiotis Laskaridis

Industrial gas turbines are susceptible to compressor fouling, which is the deposition and accretion of airborne particles or contaminants on the compressor blades. This paper demonstrates the blade aerodynamic effects of fouling through experimental compressor cascade tests and the accompanied engine performance degradation using turbomatch, an in-house gas turbine performance software. Similarly, on-line compressor washing is implemented taking into account typical operating conditions comparable with industry high pressure washing. The fouling study shows the changes in the individual stage maps of the compressor in this condition, the impact of degradation during part-load, influence of control variables, and the identification of key parameters to ascertain fouling levels. Applying demineralized water for 10 min, with a liquid-to-air ratio of 0.2%, the aerodynamic performance of the blade is shown to improve, however most of the cleaning effect occurred in the first 5 min. The most effectively washed part of the blade was the pressure side, in which most of the particles deposited during the accelerated fouling. The simulation of fouled and washed engine conditions indicates 30% recovery of the lost power due to washing.


1997 ◽  
Vol 119 (2) ◽  
pp. 357-362
Author(s):  
D. K. Harris ◽  
D. G. Warren ◽  
V. W. Goldschmidt

The impact of manifold design on single-phase heat exchanger effectiveness is studied using the NTU-Effectiveness method. Manifolds are devices that redistribute the internal flow stream of a heat exchanger from one to several passages. Two manifold types are identified: collector box and direct split designs. The particular application considered is that of a gas fired forced air heating system. A general enhancement analysis is performed which covers four different combinations of performance and objective criteria. Three cases involve increasing the heat exchanger effectiveness while constraining either the internal flow head loss, the internal mass flow rate, or their product. The other case involves reducing the required heat exchanger flow length while constraining the heat transfer rate. Familiar convection correlations are then incorporated into the enhancement analysis to predict general trends and behavior when the main tube is split into several smaller tubes. Analytical estimates of improved effectiveness are presented for three operating conditions of an actual heat exchanger which possesses a manifold. Experimental data acquired from the gas-to-gas heat exchanger are compared to numerical predictions of its performance without a manifold (baseline design). The analytical equations developed closely predict the improvement in heat exchanger effectiveness.


Author(s):  
O̸yvind Hundseid ◽  
Lars E. Bakken ◽  
Trond G. Gru¨ner ◽  
Lars Brenne ◽  
Tor Bjo̸rge

This paper evaluates the performance analysis of wet gas compression. It reports the performance of a single stage gas centrifugal compressor tested on wet gas. These tests were performed at design operating range with real hydrocarbon mixtures. The gas volume fraction was varied from 0.97 to 1.00, with alternation in suction pressure. The range is representative for many of the gas/condensate fields encountered in the North Sea. The machine flow rate was varied to cover the entire operating range. The compressor was also tested on a hydrocarbon gas and water mixture to evaluate the impact of liquid properties on performance. No performance and test standards currently exist for wet gas compressors. To ensure nominated flow under varying fluid flow conditions, a complete understanding of compressor performance is essential. This paper gives an evaluation of real hydrocarbon multiphase flow and performance parameters as well as a wet gas performance analysis. The results clearly demonstrate that liquid properties influence compressor performance to a high degree. A shift in compressor characteristics is observed under different liquid level conditions. The results in this paper confirm the need for improved fundamental understanding of liquid impact on wet gas compression. The evaluation demonstrates that dry gas performance parameters are not applicable for wet gas performance analysis. Wet gas performance parameters verified against results from the tested compressor is presented.


Author(s):  
Joachim Kurzke

This paper describes how the fundamental effects of inlet flow distortion on the performance of gas turbines can be evaluated with any engine performance program that employs an integrated parallel compressor model. In this simulation method, both pressure and temperature distortions are quantified with coefficients, which relate the pressure (respectively temperature) in the spoiled sector to the value in the clean sector. In single spool compressor engines, the static pressure at the exit of the clean sector equals that of the distorted sector. This hypothesis does not hold true with multispool compressor engines because the short intercompressor ducts, which often contain struts or vanes, do not allow the mass flow transfer over the sector borders, which would be required for balancing the static pressures. The degree of aerodynamic coupling of compressors in series can be described in the performance simulation program by the simple coupling factor introduced in this paper. There are two fundamentally different reasons for the change in engine performance: First, there is the impact of the flow distortion on the component efficiencies and thus the thermodynamic cycle and second there are performance changes due to the actions of the control system. From the engine system simulation results, it becomes clear why inlet flow distortion has only a minor impact on the thermodynamic cycle if the comparison of the two operating conditions (with clean and distorted inlet flow) is made at the properly averaged engine inlet conditions. For each compressor, the parallel compressor theory yields two operating points in the map, one for the clean sector and one for the spoiled sector. The performance loss due to the distortion is small since the efficiency values in the two sectors are only a bit lower than the efficiency at a comparable operating point with clean inlet flow. However, the control system of the engine can react to the inlet flow distortion in such a way that the thrust delivered changes significantly. This is particularly true if a compressor bleed valve or a variable area nozzle is opened to counteract compressor stability problems. Especially, using recirculating bleed air for increasing the surge margin of a compressor affects the performance of the engine negatively. Two examples show clearly that the pros and cons of recirculating bleed can only be judged with a full system simulation; looking at the surge line improvement alone can be misleading.


Sign in / Sign up

Export Citation Format

Share Document