scholarly journals A Study of the Strength Performance of Peat Soil: A Modified Cement-Based Stabilization Agent Using Fly Ash and Polypropylene Fiber

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4059
Author(s):  
Mohammed K. H. Radwan ◽  
Foo Wei Lee ◽  
Yoke Bee Woon ◽  
Ming Kun Yew ◽  
Kim Hung Mo ◽  
...  

The use of cement as a soil stabilization agent is one of the common solutions to enhancing the engineering properties of soil. However, the impact and cost of using cement have raised environmental concerns, generating much interest in the search for alternative materials to reduce the use of cement as a stabilizing agent in soil treatment. This study looked into limiting cement content in peat soil stabilization by using fly ash waste and polypropylene fiber (PPF). It focused on soil mechanical mediation for stabilization of peat with fly ash cement and PPF cement by comparing the mechanical properties, using unconfined compressive strength (UCS) and California bearing ratio (CBR) tests. The control (untreated) peat specimen and specimens with either fly ash (10%, 20% and 30%) and PPF (0.1%, 0.15% and 0.2%) were studied. Test results showed that 30% of fly ash and cement content displays the highest UCS and CBR values and gives the most reliable compressibility properties. On the other hand, UCS and CBR test results indicate optimum values of PPF–cement stabilizing agent content in the specimen of 0.15% PPF and 30% cement. Selected specimens were analyzed using scanning electron microscopy (SEM), and PPF threads were found to be well surrounded by cement-stabilized peat matrices. It was also observed that the specimen with 30% fly ash generated more hydration products when compared to the specimen with 100% cement content. It is concluded that the use of fly ash cement and PPF cement as stabilizing agents to limit the cement usage in peat soil treatment is potentially viable.

2016 ◽  
Vol 43 (10) ◽  
pp. 865-874 ◽  
Author(s):  
Sheng-lin Wang ◽  
Qing-feng Lv ◽  
Hassan Baaj ◽  
Xiao-yuan Li ◽  
Yan-xu Zhao

Freeze–thaw action is considered to be one of the most destructive actions that can induce significant damage in stabilized subgrades in seasonally frozen loess areas. Laboratory tests including frost heave – thaw shrinkage and microstructure change during freeze–thaw cycles were conducted to evaluate the volume change rate of loess stabilized with cement, lime, and fly ash under the impact of cyclic freeze–thaw conditions. The loess specimens collapsed after eight freeze–thaw cycles (192 h), but most stabilized loess specimens had no visible damage after all freeze–thaw cycles were completed. All of the stabilized loess samples underwent a much smaller volume change than the loess alone after the freeze–thaw cycles. Although surface porosity and equivalent diameter of stabilized loess samples increased, the stabilized loess can retain its microstructure during freeze–thaw cycles when the cement content was less than 6%. To ensure freeze–thaw resistance of stabilized loess subgrades, the mix proportions of the three additives was recommended to be 4 to 5% cement, 6% lime, and 10% fly ash.


Author(s):  
Prerna Priya ◽  
Ran Vijay Singh

Expansive Black cotton clay soils are widely distributed worldwide, and are a significant damage to infrastructure and buildigs.It is a common practice around the world to stabilize black cotton soil using fly ash to improve the strength of stabilized sub- base and sub grade soil. Soil stabilization is the improvement of strength or bearing capacity of soil by controlled compaction, proportioning or addition of suitable admixtures or stabilizers. The Black cotton soils are extremely hard when dry, but lose its strength fully when in wet condition. In monsoon they guzzle water and swell and in summer they shrink on evaporation of water from there. Because of its high Swelling and shrinkage characteristics the black cotton soils has been a challenge to the highway engineers.So in this research paper fly ash has been used to improve the various strength properties of natural black cotton soil.The objective of this research paper is to improve the engineering properties of black cotton soil by adding different percentage of fly ash by the weight of soil and make it suitable for construction. A series of standard Proctor tests (for calculation of MDD and OMC) and California Bearing Ratio (C.B.R) tests are conducted on both raw Black cotton soil and mixed soil with different percentages of fly ash (5%, 10%, 20%, 30%) by weight. A comparison between properties of raw black cotton soil, black cotton soil mixed with fly ash are performed .It is found that the properties of black cotton soil mixed with fly ash are suitably enhanced.


Author(s):  
Pratiksha R. Patil

Abstract: Soil stabilization has become the more issue in construction activity. In this study we focus on improvement of soil by using Fly ash and ground granulated blast furnace slag (GGBS). In many villages there was demolition of houses due to flood situation and landslide so stabilization of soil is very important factor in this area. In these studies we use local Fly ash and Ground granulated blast furnace slag (GGBS) for stabilization of soil. Soil are generally stabilized to increase their strength and durability or to prevent soil erosion. The properties of soil vary a great deal at different places or in certain cases even at one place the success of soil stabilization depends on soil testing. Various methods are there to stabilize soil and the method should be verified in the lab with the soil material before applying it on the field. The various percentages of Fly ash and GGBS were mixed with soil sample to conduct soil test. Using fly ash reduces the plasticity index which has potential impact on engineering properties also GGBS has cementations property which acts as binding material for the soil. On addition of 15% Fly ash and 5% GGBS increase the strength of soil (according to IS2720:1985) it’s recommended for better result. Keywords: Stabilization of soil, Fly ash, GGBS, Black cotton soil, Soil test.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3018 ◽  
Author(s):  
Mirjana Vukićević ◽  
Miloš Marjanović ◽  
Veljko Pujević ◽  
Sanja Jocković

Major infrastructure projects require significant amount of natural materials, often followed by the soft soil stabilization using hydraulic binders. This paper presents the results of a laboratory study of alternative waste materials (fly ash and slag) that can be used for earthworks. Results of high plasticity clay stabilization using fly ash from Serbian power plants are presented in the first part. In the second part of the paper, engineering properties of ash and ash-slag mixtures are discussed with the emphasis on the application in road subgrade and embankment construction. Physical and mechanical properties were determined via following laboratory tests: Specific gravity, grain size distribution, the moisture–density relationship (Proctor compaction test), unconfined compressive strength (UCS), oedometer and swell tests, direct shear and the California bearing ratio (CBR). The results indicate the positive effects of the clay stabilization using fly ash, in terms of increasing strength and stiffness and reducing expansivity. Fly ashes and ash-slag mixtures have also comparable mechanical properties with sands, which in combination with multiple other benefits (lower energy consumption and CO2 emission, saving of natural materials and smaller waste landfill areas), make them suitable fill materials for embankments, especially considering the necessity for sustainable development.


2012 ◽  
Vol 598 ◽  
pp. 511-515
Author(s):  
Hong Lu Mao ◽  
Pei Zhi Zhuang ◽  
Yi Wu Feng

The compactness is prone to markedly decreased after dampening in the subgrade filled by Ginger-stone soil. To solve this problem, a series of tests have been done on the conventional and improved Ginger-stone soil, such as granule analysis test, compaction test, CBR test and water stability test. The test results indicates that the CBR value of Ginger-stone soil is low and it has a strong capillary action, which make it cannot be directly used for roadbed filling of expressway and first class highway. By adding the lime(3%) and fly ash (9%) into the Ginger-stone soil, the CBR value and water stability of sample are obviously improved, and its control of construction becomes easy, so the improved Ginger-stone soil can be directly used as roadbed filling.


2016 ◽  
Vol 723 ◽  
pp. 795-800 ◽  
Author(s):  
Habib Rasouli ◽  
Hana Takhtfirouzeh ◽  
Abbasali Taghavi Ghalesari ◽  
Roya Hemati

In order to attain a satisfactory level of safety and stability in the construction of structures on weak soil, one of the best solutions can be soil improvement. The addition of a certain percentage of some materials to the soil may compensate for its deficiency. Cement is a suitable material to be used for stabilization and modification of a wide variety of soils. By using this material, the engineering properties of soil can be improved. In this study, the effect of soil stabilization with cement on the bearing capacity of a shallow foundation was studied by employing finite element method. The material properties were obtained by conducting experimental tests on cement-stabilized sand. Cement varying from 2% to 8% by soil dry weight was added for stabilization. The effect of reinforced soil block dimensions, foundation width and cement content were investigated. From the results, it can be figured out that by stabilizing the soil below the foundation to certain dimensions with the necessary cement content, the bearing capacity of the foundation will increase to an acceptable level.


1988 ◽  
Vol 25 (4) ◽  
pp. 694-704 ◽  
Author(s):  
P. S. Toth ◽  
H. T. Chan ◽  
C. B. Cragg

Fly ash and bottom ash obtained from coal-fired electric power generating stations can be used as alternatives to natural materials for the construction of structural fills. The engineering properties of coal ash pertinent to its use in structural fills are discussed. Four case studies of coal ash structural fills are presented. The performance of these fills was monitored during and after construction. These cases demonstrate that the physical behavior of fly ash is similar to that of silt and that it can be handled with similar methods. Groundwater monitoring data from existing fly ash fills are presented to show the impact that ash leachate migrating into the groundwater regime has on water quality. Results of long-term corrosion studies are presented to show that metals buried in ash, used in such structures as culverts, cable ducts, guard rails and streetlights, are not adversely affected. Ash leachate was found not to be detrimental to good-quality concrete structures. Key words: fly ash, fill, compaction, leachate, corrosion, concrete.


2013 ◽  
Vol 357-360 ◽  
pp. 671-675
Author(s):  
Zhong Dong Liu ◽  
Wen Juan Zhao

In this paper the molding mechanisms of mibration compaction for concrete bricks is explained. A lot of concrete bricks with different ash content were by a vibration compaction machines produced. The characteristics of the concrete bricks are investigated. The experiments showed that the starting hardness of the concrete bricks at the separation from molding tools is sufficient for brick stacking.


2019 ◽  
Vol 258 ◽  
pp. 01014
Author(s):  
Noorfaizah Hamzah ◽  
Nur ‘Ain Mat Yusof ◽  
Muhammad Ihsan Haziq Mohd Rahimi

Construction activities on peat soils are found to be extremely difficult as the soil is profound as soft soil and has low shear strength and high moisture content. Due to alternating swelling and shrinkage nature, it causes serious damage to the structure above it. This happens due to repetition of drying and wetting of soil. Stabilization of soil is commonly applied to improve the mechanical properties of soil prior to soil engineering works. This soil improvement method is advantageous and effective one by using waste materials. Waste in our country is divided in various types and it includes domestic wastes, industrial wasters, agricultural wastes etc. Because of difficulties to diminish these wastes without affect to environment and surroundings, it can be used as a stabilizing agent in the soil. Therefore, this experimental study carried out to evaluate the effect of Rice Husk Ash (RHA) and sawdust on engineering properties of the peat soil. The properties such as compaction and unconfined compressive strength are determined separately with sawdust and added of RHA in peat soil at a variety of percentages (2.5%, 5% etc.) in addition small amount of constant rate of lime with 2% of the dry soil weight. By obtaining the results, it can deduce a promising and improving result in stabilizing the soil with sawdust and Rice Husk Ash in both economic and strength capacity. This will not only solve the waste disposal problem but also enhance the strength characteristics of soil significantly.


2021 ◽  
Vol 889 (1) ◽  
pp. 012072
Author(s):  
Amit Sharma ◽  
Sanjeev Gupta

Abstract The impact of the OPC on the environment is important as its production generates a large amount of CO2. In order to reduce the use of pure raw materials as resources, the use of industrial waste or secondary materials in construction sites for the production of cement and concrete has been encouraged. The volume of wastes generated worldwide has increased over the years due to the population, social and economic performance and social development. One of the most attractive options for waste management is to minimize waste and reuse the possibility of recycling. The cost of cement used in concrete works is increasing and unsatisfactory, but the demand for this material and other housing needs is rising, so it is important to find alternatives that can be used alone or in a partial replacement. In this research work several auxiliary cementitious ingredients such as metakaoline, GGBFS and Rice Husk Ash (RHA) were used to improve the strength properties of the conservative concrete. Metakaolin and GGBFS was used at a fixed percentage of 10 percent as fractional substitution of the OPC-43 grade cement, while the RHA was used at different percent ranging from 0 to 25 percent at an increment of 5 percent in each case as fractional substitution of the OPC-43 grade cement. Numerous examinations were executed so as to envisage the effect of these materials over the strength and engineering properties of the concrete. The test results conclude that the usage of the metakaolin, GGBFS and the RHA in combined form increased the strength and engineering properties of the conventional concrete up to a great extent. From the obtained test results it can be further concluded that the particle size of the supplementary cementitious materials plays a significant role in enhancing the internal micro-structure of the concrete and which further leads to the higher strength of the concrete. Also the main reason behind the advanced strength was the presence of the metakaolin and GGBFS in the concrete, whose chemical properties densifies the concrete and made the concrete more stable and promotes higher strength. Future work can also be done on the usage of several other supplementary cementitious materials at different other percentages so as to improve concrete properties.


Sign in / Sign up

Export Citation Format

Share Document