scholarly journals Detection of Possible COVID-19 Cases using Thermal Imaging and a DRONE

Author(s):  
Brian Meneses Claudio ◽  
◽  
Luis Nuñez Tapia ◽  
Witman Alvarado Díaz

In December 2019, a series of cases of pneumonia caused by SARS-CoV-2 were identified in Wuhan (China), which was declared by the WHO as a pandemic on March 11th , 2020, because it caused enormous problems for the global public health due to its rapid expansion. In Peru it was only on March 6th , 2020, that the first case of COVID-19 was reported, therefore, the government took some measures to control the spread of the virus. A biosafety measure that is frequently used is taking the temperature with an infrared thermometer, which is not well seen by some specialists due to the error it has, therefore, it would not represent a safe measurement, as other measurement systems do. . In view of this problem, in this article a thermal image processing system was carried out to detect possible cases of patients with COVID-19, in such a way that the system performs a more accurate measurement of body temperature and can be implemented in any place, where this measurement is intended to be carried out, helping to combat the spread of the virus that currently continues to affect many people. Through the development of the system, tests were conducted with various people, obtaining a more accurate measurement of body temperature with an efficiency of 95% at 1 m between the drone and the person, in such a way that if it presents a body temperature above 37°C could be infected with COVID-19. Keywords-- Thermal camera, COVID-19, Drone, MATLAB, WHO, Image processing

Author(s):  
Luis Nuñez Tapia ◽  
◽  
Brian Meneses Claudio ◽  
Witman Alvarado Díaz

Abstract— The problem that the world is currently facing and that has claimed more than 3.2 million lives worldwide is COVID-19. Being a highly contagious disease, the WHO recommended limiting the movement of people out of their residence. Given this, Peru took the necessary measures to control the spread of this virus, therefore, the government decreed a general quarantine in the country, which from March 6th to May 9th, 2020, had reported the death of 1814 people in the country, because the health system at the national level was not prepared for such magnitude, in addition to that the number of infections continued to grow since they do not respect social distancing. In view of this problem, this article will design a thermal image processing system to detect possible cases of patients with COVID-19, in such a way that it allows companies or institutions to know the body temperature of each person, and thus know they are possibly COVID-19 patients. Through the design of this system, it will be possible to measure body temperature with the drone and the thermal camera at 50 cm from the person, in such a way that if the person has a body temperature higher than 38°C it could be infected with COVID-19. Therefore, the implementation of this system will help reduce the number of infections within an institution or workplace. Keywords-- Thermal camera, COVID-19, Drone, MATLAB, Image.


2021 ◽  
pp. 109-121
Author(s):  
Faisal Najib Abdullah ◽  
Mohamad Nurkamal Fauzan ◽  
Noviana Riza

In this new normal era, many activities began to operate again, such as offices, malls, etc. This creates a potential mass crowd. The public must follow health protocols as recommended by the government, including wearing masks and checking the temperature to anticipate the spread of the coronavirus. This study tested a tool that included image processing and artificial intelligence to help implement health protocols as recommended by the government. This tool connects Raspberry PI, Thermal Camera (amg8833), Pi Camera, an ultrasonic sensor with Multiple Linear Regression and Deep Learning algorithms. The purpose of this tool is to detect body temperature and detect the use of masks. The system will check on the pi camera frame whether the person is wearing a mask or not. The system is trained using the Deep Learning method to detect the use of masks. The system will check the temperature of the human body and the distance between humans and the tool. Temperature and distance data are entered in multiple linear regression formulas to get more accurate results. The processed results of the system will be displayed on the monitor screen if detected using a mask and the normal temperature will be green and if it is not detected it will be red and give a warning sound. The data is sent to the server and displayed via the web. We found that this tool succeeded in detecting body temperature within a distance of 1 to 3 meters with an accuracy of 99.49%, detecting people using masks with an accuracy of 94.71%, and detecting people not wearing masks with an accuracy of 97.7%.


Author(s):  
Brian Meneses Claudio ◽  
◽  
Luis Nuñez Tapia ◽  
Witman Alvarado Díaz ◽  
Alicia Alva Mantari

COVID-19 does not show signs of having disappeared, being a very contagious disease, the WHO recommended limiting the free movement of people, since from its appearance until May 1st, 2021, it caused the death of more than 3.2 million of people around the world. In Peru, it economically affected those people who generated income every day to survive, for this reason some activities were reactivated complying with the biosafety measures that are the use of mandatory mask and social distancing (more than 1 meter). Taking body temperature with an infrared thermometer is an optional measure, generating rejection by specialists, indicating that there is little evidence of its sensitivity and specificity and of its doubtful ability to detect fever. In view of this problem, this article will implement a thermal image processing system to detect possible cases of patients with COVID-19, in such a way that the system performs a more accurate measurement of body temperature, and it can be implemented in any place where such measurement is intended, helping to combat the spread of the virus that currently continues to affect many people. The system has a more accurate measurement of body temperature with an efficiency of 95% at 1 meter between the drone and the person, in such a way that if it presents a body temperature higher than 40°C it could be infected with COVID-19


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Daniel Hernandez-Huerta ◽  
Maria Martin-Larregola ◽  
Jorge Gomez-Arnau ◽  
Javier Correas-Lauffer ◽  
Helen Dolengevich-Segal

Energy drinks (ED) are nonalcoholic beverages that have caffeine as their most common active substance. The rapid expansion of ED consumption has created concern in the scientific community as well as in the public opinion. We report a psychotic episode probably triggered by ED abuse in a young adult without previous psychotic disorders. We have reviewed the literature regarding the relationship between caffeine, energy drinks, and psychopathology. Few articles have been published about mental health effects of energy drinks and caffeine abuse. Nevertheless, this relationship has been suggested, specifically with anxiety disorders, manic episodes, suicide attempts, psychotic decompensation, and substance use disorder. ED consumption could represent a global public health problem because of the potential severe adverse effects in mental and physical health. To our knowledge, this article is probably the first case of psychosis related to ED abuse in an individual without previous psychotic disorders.


Author(s):  
J. Hefter

Semiconductor-metal composites, formed by the eutectic solidification of silicon and a metal silicide have been under investigation for some time for a number of electronic device applications. This composite system is comprised of a silicon matrix containing extended metal-silicide rod-shaped structures aligned in parallel throughout the material. The average diameter of such a rod in a typical system is about 1 μm. Thus, characterization of the rod morphology by electron microscope methods is necessitated.The types of morphometric information that may be obtained from such microscopic studies coupled with image processing are (i) the area fraction of rods in the matrix, (ii) the average rod diameter, (iii) an average circularity (roundness), and (iv) the number density (Nd;rods/cm2). To acquire electron images of these materials, a digital image processing system (Tracor Northern 5500/5600) attached to a JEOL JXA-840 analytical SEM has been used.


Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Author(s):  
Weiping Liu ◽  
John W. Sedat ◽  
David A. Agard

Any real world object is three-dimensional. The principle of tomography, which reconstructs the 3-D structure of an object from its 2-D projections of different view angles has found application in many disciplines. Electron Microscopic (EM) tomography on non-ordered structures (e.g., subcellular structures in biology and non-crystalline structures in material science) has been exercised sporadically in the last twenty years or so. As vital as is the 3-D structural information and with no existing alternative 3-D imaging technique to compete in its high resolution range, the technique to date remains the kingdom of a brave few. Its tedious tasks have been preventing it from being a routine tool. One keyword in promoting its popularity is automation: The data collection has been automated in our lab, which can routinely yield a data set of over 100 projections in the matter of a few hours. Now the image processing part is also automated. Such automations finish the job easier, faster and better.


2020 ◽  
Author(s):  
Vita Widyasari ◽  
Karisma Trinanda Putra ◽  
Jiun-Yi Wang

BACKGROUND The volume of search keywords on Google can be used as a reference to an ongoing online trend during COVID-19 pandemic. OBJECTIVE This study was aimed to estimate the responsiveness and public awareness in early days of the COVID-19 outbreak in Indonesia using Google Trends relative search volumes (RSV). METHODS Sixty terms or keywords forming six topics included in the analysis were basic information, prevention, government policy, socio-economic, anxiety, and other issues related to COVID-19. All these keywords were checked for surveillance purposes between January 1 and May 4, 2020. The Python programming language was used for data mining from Google Trends databases. Correlation analysis was conducted to examine the correlations between the incidence of COVID-19 and the search terms. RESULTS Community response and awareness in the six topics were associated with the number of COVID-19 cases (r range between 0.570-0.825, P-value<.005). Before the first case announced in Indonesian, the prominent topics were basic information and other issues. One month after the first case, all topics experienced an increase in RSV. In the phase of outbreak, socio-economic and anxiety got much more attentions. CONCLUSIONS The government should consider to optimize the internet as a media for timely delivering most relevant information and dynamically respond massive queries, and improve health communications to increase public awareness and intention to prevent the disease.


Author(s):  
Jayesh S

UNSTRUCTURED Covid-19 outbreak was first reported in Wuhan, China. The deadly virus spread not just the disease, but fear around the globe. On January 2020, WHO declared COVID-19 as a Public Health Emergency of International Concern (PHEIC). First case of Covid-19 in India was reported on January 30, 2020. By the time, India was prepared in fighting against the virus. India has taken various measures to tackle the situation. In this paper, an exploratory data analysis of Covid-19 cases in India is carried out. Data namely number of cases, testing done, Case Fatality ratio, Number of deaths, change in visits stringency index and measures taken by the government is used for modelling and visual exploratory data analysis.


Sign in / Sign up

Export Citation Format

Share Document