scholarly journals Dissection of the amyloid formation pathway in AL amyloidosis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pamina Kazman ◽  
Ramona M. Absmeier ◽  
Harald Engelhardt ◽  
Johannes Buchner

AbstractIn antibody light chain (AL) amyloidosis, overproduced light chain (LC) fragments accumulate as fibrils in organs and tissues of patients. In vitro, AL fibril formation is a slow process, characterized by a pronounced lag phase. The events occurring during this lag phase are largely unknown. We have dissected the lag phase of a patient-derived LC truncation and identified structural transitions that precede fibril formation. The process starts with partial unfolding of the VL domain and the formation of small amounts of dimers. This is a prerequisite for the formation of an ensemble of oligomers, which are the precursors of fibrils. During oligomerization, the hydrophobic core of the LC domain rearranges which leads to changes in solvent accessibility and rigidity. Structural transitions from an anti-parallel to a parallel β-sheet secondary structure occur in the oligomers prior to amyloid formation. Together, our results reveal a rate-limiting multi-step mechanism of structural transitions prior to fibril formation in AL amyloidosis, which offers, in the long run, opportunities for therapeutic intervention.

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3571
Author(s):  
Gareth J. Morgan

Inhibition of amyloid fibril formation could benefit patients with systemic amyloidosis. In this group of diseases, deposition of amyloid fibrils derived from normally soluble proteins leads to progressive tissue damage and organ failure. Amyloid formation is a complex process, where several individual steps could be targeted. Several small molecules have been proposed as inhibitors of amyloid formation. However, the exact mechanism of action for a molecule is often not known, which impedes medicinal chemistry efforts to develop more potent molecules. Furthermore, commonly used assays are prone to artifacts that must be controlled for. Here, potential mechanisms by which small molecules could inhibit aggregation of immunoglobulin light-chain dimers, the precursor proteins for amyloid light-chain (AL) amyloidosis, are studied in assays that recapitulate different aspects of amyloidogenesis in vitro. One molecule reduced unfolding-coupled proteolysis of light chains, but no molecules inhibited aggregation of light chains or disrupted pre-formed amyloid fibrils. This work demonstrates the challenges associated with drug development for amyloidosis, but also highlights the potential to combine therapies that target different aspects of amyloidosis.


1995 ◽  
Vol 306 (2) ◽  
pp. 599-604 ◽  
Author(s):  
E M Castano ◽  
F Prelli ◽  
T Wisniewski ◽  
A Golabek ◽  
R A Kumar ◽  
...  

A central event in Alzheimer's disease is the conformational change from normally circulating soluble amyloid beta peptides (A beta) and tau proteins into amyloid fibrils, in the form of senile plaques and neurofibrillary tangles respectively. The apolipoprotein E (apoE) gene locus has recently been associated with late-onset Alzheimer's disease. It is not know whether apoE plays a direct role in the pathogenesis of the disease. In the present work we have investigated whether apoE can affect the known spontaneous in vitro formation of amyloid-like fibrils by synthetic A beta analogues using a thioflavine-T assay for fibril formation, electron microscopy and Congo Red staining. Our results show that, under the conditions used, apoE directly promotes amyloid fibril formation, increasing both the rate of fibrillogenesis and the total amount of amyloid formed. ApoE accelerated fibril formation of both wild-type A beta-(1-40) and A beta-(1-40A), an analogue created by the replacement of valine with alanine at residue 18, which alone produces few amyloid-like fibrils. However, apoE produced only a minimal effect on A beta-(1-40Q), found in the Dutch variant of Alzheimer's disease. When recombinant apoE isoforms were used, apoE4 was more efficient than apoE3 at enhancing amyloid formation. These in vitro observations support the hypothesis that apoE acts as a pathological chaperone, promoting the beta-pleated-sheet conformation of soluble A beta into amyloid fibres, and provide a possible explanation for the association of the apoE4 genetic isoform with Alzheimer's disease.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3100-3100 ◽  
Author(s):  
Ken Flanagan ◽  
Muntasir M Majumder ◽  
Romika Kumari ◽  
Juho Miettinen ◽  
Ana Slipicevic ◽  
...  

Background: Immunoglobulin light-chain (AL) amyloidosis is a rare disease caused by plasma cell secretion of misfolded light chains that assemble as amyloid fibrils and deposit on vital organs including the heart and kidneys, causing organ dysfunction. Plasma cell directed therapeutics, aimed at preferentially eliminating the clonal population of amyloidogenic cells in bone marrow are expected to reduce production of toxic light chain and alleviate deposition of amyloid thereby restoring healthy organ function. Melphalan flufenamide ethyl ester, melflufen, is a peptidase potentiated alkylating agent with potent toxicity in myeloma cells. Melflufen is highly lipophilic, permitting rapid cellular uptake, and is subsequently enzymatically cleaved by aminopeptidases within cells resulting in augmented intracellular concentrations of toxic molecules, providing a more targeted and localized treatment. Previous data demonstrating multiple myeloma plasma cell sensitivity for melflufen suggests that the drug might be useful to directly eliminate amyloidogenic plasma cells, thereby reducing the amyloid load in patients. Furthermore, the increased intracellular concentrations of melflufen in myeloma cells indicates a potential reduction in systemic toxicity in patients, an important factor in the fragile amyloidosis patient population. To assess potential efficacy in amyloidosis patients and to explore the mechanism of action, we examined effects of melflufen on amyloidogenic plasma cells invitro and invivo. Methods: Cellular toxicity and apoptosis were measured in response to either melflufen or melphalan in multiple malignant human plasma cell lines, including the amyloidosis patient derived light chain secreting ALMC-1 and ALMC-2 cells, as well as primary bone marrow cells from AL amyloidosis patients, using annexin V and live/dead cell staining by multicolor flow cytometry, and measurement of cleaved caspases. Lambda light chain was measured in supernatant by ELISA, and intracellular levels were detected by flow cytometry. To assess efficacy of melflufen in vivo, the light chain secreting human myeloma cell line, JJN3, was transduced with luciferase and adoptively transferred into NSG mice. Cell death in response to melflufen or melphalan was measured by in vivo bioluminescence, and serum light chain was monitored. Results: Melflufen demonstrated increased potency against multiple myeloma cell lines compared to melphalan, inducing malignant plasma cell death at lower doses on established light chain secreting plasma cell lines. While ALMC-1 cells were sensitive to both melphalan and melflufen, the IC50 for melphalan at 960 nM was approximately 3-fold higher than melflufen (334 nM). However, ALMC-2 cells were relatively insensitive to melphalan (12600 nM), but maintained a 100-fold increase in sensitivity to melflufen (121 nM). Furthermore, while 40% of primary CD138+ plasma cells from patients with diagnosed AL amyloidosis responded to melflufen treatment in vitro, only 20% responded to melphalan with consistently superior IC50 values for melflufen (Figure 1). Light chain secreting cell lines and AL amyloidosis patient samples were further analyzed by single cell sequencing. We further examined differential effects on apoptosis and the unfolded protein response in vitro in response to either melflufen or melphalan. This is of particular interest in amyloidosis, where malignant antibody producing plasma cells possess an increased requirement for mechanisms to cope with the amplified load of unfolded protein and associated ER stress. As AL amyloidosis is ultimately a disease mediated by secretion of toxic immunoglobulin, we assessed the effects of melflufen on the production of light chain invitro, measuring a decrease in production of light chain in response to melflufen treatment. Finally, we took advantage of a recently described adoptive transfer mouse model of amyloidosis to assess the efficacy of melflufen and melphalan in eliminating amyloidogenic clones and reducing the levels of toxic serum light chain in vivo. Conclusions: These findings provide evidence that melflufen mediated toxicity, previously described in myeloma cells, extends to amyloidogenic plasma cells and further affects the ability of these cells to produce and secrete toxic light chain. This data supports the rationale for the evaluation of melflufen in patients with AL amyloidosis. Figure 1 Disclosures Flanagan: Oncopeptides AB: Employment. Slipicevic:Oncopeptides AB: Employment. Holstein:Celgene: Consultancy; Takeda: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy; Genentech: Membership on an entity's Board of Directors or advisory committees; Sorrento: Consultancy. Lehmann:Oncopeptides AB: Employment. Nupponen:Oncopeptides AB: Employment. Heckman:Celgene: Research Funding; Novartis: Research Funding; Oncopeptides: Research Funding; Orion Pharma: Research Funding.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
P.E Nikolaou ◽  
G.I Nasi ◽  
I Sulaiman ◽  
P Spatharas ◽  
S Kikionis ◽  
...  

Abstract Background/Introduction Light chain (AL) amyloidosis is an uncommon malignancy manifested by systemic extracellular deposition of immunoglobulin light chain fibrils. The cardiac phenotype is characterised by ventricular wall thickening and stands as the most prominent cause of morbidity and mortality. Although, it has been established that the circulating light chains directly impair cardiomyocyte function, the cytotoxic effect of specific amyloidogenic peptides that may appear due to excessive cleavage of light chains remains unspecified. Purpose In the present work, we aimed to detect amyloidogenic “hot-spots” on the variable domains of light chains associated with cardiac AL amyloidosis (IGLV1-44 and IGLV3-01) or inferior outcomes (IGLV6-57) and define their cytotoxic effect in vitro. Methods At first, we used the curated database ALBase and we performed a multiple sequence alignment of the IGLV1-44, IGLV3-01 and IGLV6-57 inputs that derived only from patients with AL amyloidosis. “Aggregation-prone” hot-spots in the conserved amino acid sequences were identified with the aid of AMYLPRED2, a tool which combines 11 independent computational methods and provides a consensus result of potent amyloidogenic regions. Five peptides were rationally selected and synthetically produced in order to be tested in vitro. The amyloidogenic properties of the peptides were evaluated with Transmission Electron Microscopy and Congo red staining, while the rate of fibril formation at lower concentrations was monitored with Thioflavin T and confirmed with Scanning Electron Microscopy. In order to assess the cytotoxic effect of the non-polymerized peptides, H9C2 cells were incubated with the peptides for 24 hours at 200μg/mL and 100μg/mL and cell death was determined by lactate dehydrogenase release assay. Results Interestingly, sequence alignment on the variable domains of cardiac related light chains revealed the presence of several conserved domains in patients with AL amyloidosis. The chosen peptides were proven to be amyloidogenic suggesting that the variable domains share common amyloidogenic cores. Treatment of H9C2 cells with the peptides at 200μg/mL led to significant reduction in cell viability compared to vehicle treated cells (p<0.001). Two of the peptides deriving from the IGLV6-57 and IGLV3-01 significantly increased cell death at 100μg/mL (p<0.01 and p<0.001 respectively). During the 24h treatment the tested peptides comprised of soluble species and not amyloid fibrils suggesting that monomeric and oligomeric intermediates are highly toxic. Conclusion We discovered five novel amyloidogenic prone regions of cardiac related variable domains that are associated with cellular toxicity and could be exploited for targeted therapeutic interventions. Funding Acknowledgement Type of funding source: None


2000 ◽  
Vol 348 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Clara REDONDO ◽  
Ana M. DAMAS ◽  
Maria João M. SARAIVA

The molecular mechanisms that convert soluble transthyretin (TTR) tetramers into insoluble amyloid fibrils are still unknown; dissociation of the TTR tetramer is a pre-requisite for amyloid formation in vitro and involvement of monomers and/or dimers in fibril formation has been suggested by structural studies. We have designed four mutated proteins with the purpose of stabilizing [Ser117 → Cys (S117C) and Glu92 → Cys (E92C)] or destabilizing [Asp18 → Asn (D18N) and Leu110 → Ala (D110A)] the dimer/tetramer interactions in TTR, aiming at elucidating structural determinants in amyloidogenesis. The resistance of the mutated proteins to dissociation was analysed by HPLC studies of diluted TTR preparations. Both ‘stabilized’ mutants migrated as tetramers and, upon dilution, no other TTR species was observed, confirming the increased resistance to dissociation. For the ‘destabilized’ mutants, a mixture of tetrameric and monomeric forms co-existed at low dilution and the latter increased upon 10-fold dilution. Both of the destabilizing mutants formed amyloid in vitro when acidified. This result indicated that both the AB loop of TTR, destabilized in D18N, and the hydrophobic interactions affecting the dimer-dimer interfaces in L110A are implicated in the stability of the tetrameric structure. The stabilized mutants, which were dimeric in nature through disulphide bonding, were unable to polymerize into amyloid, even at pH 3.2. When the amyloid formation assay was repeated in the presence of 2-mercaptoethanol, upon disruption of the S-S bridges of these stable dimers, amyloid fibril formation was observed. This experimental evidence suggests that monomers, rather than dimers, are the repeating structural subunit comprising the amyloid fibrils.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Pamina Kazman ◽  
Marie-Theres Vielberg ◽  
María Daniela Pulido Cendales ◽  
Lioba Hunziger ◽  
Benedikt Weber ◽  
...  

In systemic light chain amyloidosis, an overexpressed antibody light chain (LC) forms fibrils which deposit in organs and cause their failure. While it is well-established that mutations in the LC’s VL domain are important prerequisites, the mechanisms which render a patient LC amyloidogenic are ill-defined. In this study, we performed an in-depth analysis of the factors and mutations responsible for the pathogenic transformation of a patient-derived λ LC, by recombinantly expressing variants in E. coli. We show that proteolytic cleavage of the patient LC resulting in an isolated VL domain is essential for fibril formation. Out of 11 mutations in the patient VL, only one, a leucine to valine mutation, is responsible for fibril formation. It disrupts a hydrophobic network rendering the C-terminal segment of VL more dynamic and decreasing domain stability. Thus, the combination of proteolytic cleavage and the destabilizing mutation trigger conformational changes that turn the LC pathogenic.


2020 ◽  
Vol 17 (7) ◽  
pp. 589-600
Author(s):  
Shatera Tabassum ◽  
Abdullah Md. Sheikh ◽  
Shozo Yano ◽  
Takahisa Ikeue ◽  
Shingo Mitaki ◽  
...  

Background: Amyloid β (Aβ) peptide deposition is considered as the main cause of Alzheimer’s disease (AD). Previously, we have shown that a Zn containing neutral phthalocyanine (Zn-Pc) inhibits Aβ fibril formation. Objective: The objective of this study is to investigate the effects of a cationic gallium containing Pc (GaCl-Pc) on Aβ fibril formation process. Methods and Results: Aβ fibril formation was induced by incubating synthetic Aβ peptides in a fibril forming buffer, and the amount of fibril was evaluated by ThT fluorescence assay. GaCl-Pc dosedependently inhibited both Aβ1-40 and Aβ1-42 fibril formation. It mainly inhibited the elongation phase of Aβ1-42 fibril formation kinetics, but not the lag phase. Western blotting results showed that it did not inhibit its oligomerization process, rather increased it. Additionally, GaCl-Pc destabilized preformed Aβ1- 42 fibrils dose-dependently in vitro condition, and decreased Aβ levels in the brain slice culture of APP transgenic AD model mice (J20 strain). Near-infrared scanning results showed that GaCl-Pc had the ability to bind to Aβ1-42. MTT assay demonstrated that GaCl-Pc did not have toxicity towards a neuronal cell line (A1) in culture rather, showed protective effects on Aβ-induced toxicity. Moreover, it dosedependently decreased Aβ-induced reactive oxygen species levels in A1 culture. Conclusion: Thus, our result demonstrated that GaCl-Pc decreased Aβ aggregation and destabilized the preformed fibrils. Since cationic molecules show a better ability to cross the blood-brain barrier, cationic GaCl-Pc could be important for the therapy of AD.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4886-4886
Author(s):  
Marina Ramirez-Alvarado ◽  
Christopher J Ward ◽  
Bing Q Huang ◽  
Xun Gong ◽  
Marie C Hogan ◽  
...  

Abstract Abstract 4886 Detection of high molecular weight light chain oligomers in urinary exosomes of patients with AL amyloidosis. Background Exosomes are microvesicles that are part of the multivesicular body (MVB) pathway. They are created by the inward budding of the cell surface membrane and contain both surface bound membrane proteins and cytosolic proteins which can be used to identify the cell of origin. Immunoglobulin light chain amyloidosis (AL) occurs as the result of amyloid formation by the misfolding of monoclonal light chains (LC) and deposition of these amyloid fibrils in various soft tissues. This reaction requires the organization of the monoclonal LC's into protofibrils which are then weave into amyloid fibrils. This study was undertaken to determine whether urinary exosomes of glomerular origin contain intermediate species of amyloid formation. Method Urine samples from patients with AL, light chain deposition disease (LCDD), multiple myeloma (MM) and monoclonal clonal gammopathy of undetermined significance (MGUS) were collected. Urinary exosomes were isolated and separated into fractions by gradient centrifugation. Western blots were performed on the urinary exosome fractions using anti-kappa or anti-lambda antibodies. Glomerular fractions were identified using antibodies directed toward podocin. Results Urine samples were collected from 5 patients with AL, 2 from LCDD, 1 from MM and 1 MGUS. On the Western blot, immunoglobulin LC were seen in all exosomal fractions in patients with AL amyloidosis, LCDD, MM but not MGUS which is similar to normal controls (not shown). In patients with AL, oligomeric species were found in the highest concentrations in fraction 4 and 5 (Figure 1). Fraction 4 and 5 were also stained for podocin, a glomerular protein (not shown). The highest molecular weight species was ∼250 kd which corresponds to a LC decamer. High molecular weight species were also identified in 1 of 2 LCDD patients corresponding to a tetramer. The band was identified in fraction 10 which had polycystin-1 expression suggesting a tubular origin. No high molecular weight LC species was found in patients with MM or MGUS. Conclusion Our study found high molecular weight LC species corresponding to the intermediates involved in protofibril formation in urinary exosomes of patients with AL. Smaller (tetramer) high molecular weight LC species were also found in a patient with LCDD but not in patients with MM and MGUS. Not only were the high molecular weight LC species found exclusively in the diseases characterized by deposition of LC aggregates, they were also found in the segments of the nephron where the deposits were expected: glomerulus for AL and tubular epithelium for LCDD. This is consistent with our current understanding of the pathogenic mechanisms of these diseases. We believe urinary exosomes are a powerful tool in the study of diseases involving self-aggregation of monoclonal proteins. It has tremendous potential in both diagnostic and scientific research in this area. Disclosures Gertz: celgene: Honoraria; millenium: Honoraria, Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marija Mucibabic ◽  
Pär Steneberg ◽  
Emmelie Lidh ◽  
Jurate Straseviciene ◽  
Agnieszka Ziolkowska ◽  
...  

AbstractType 2 diabetes (T2D), alike Parkinson’s disease (PD), belongs to the group of protein misfolding diseases (PMDs), which share aggregation of misfolded proteins as a hallmark. Although the major aggregating peptide in β-cells of T2D patients is Islet Amyloid Polypeptide (IAPP), alpha-synuclein (αSyn), the aggregating peptide in substantia nigra neurons of PD patients, is expressed also in β-cells. Here we show that αSyn, encoded by Snca, is a component of amyloid extracted from pancreas of transgenic mice overexpressing human IAPP (denoted hIAPPtg mice) and from islets of T2D individuals. Notably, αSyn dose-dependently promoted IAPP fibril formation in vitro and tail-vein injection of αSyn in hIAPPtg mice enhanced β-cell amyloid formation in vivo whereas β-cell amyloid formation was reduced in hIAPPtg mice on a Snca −/− background. Taken together, our findings provide evidence that αSyn and IAPP co-aggregate both in vitro and in vivo, suggesting a role for αSyn in β-cell amyloid formation.


Hemato ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 3-16
Author(s):  
Moshe E. Gatt ◽  
Marjorie Pick

Primary systemic light chain amyloidosis (AL) is a rare monoclonal plasma cell disorder. Much research has been performed to determine the factors that underly amyloidogenicity. However, there is increasing evidence that the primary clone, and also patient-related factors, influence the mechanism and rate of the process. The lessons learnt from patient care definitely imply that this is not solely due to the deposition of material in the tissues that cause organ injury but amyloid light chain precursors are likely to mediate cellular toxicity. The disease rarity, combined with the lack of in vitro tools, and that multi-organ failure has a wide clinical spectrum, result in investigative challenges and treatment limitations (due to AL patient frailty). All these characteristics make the disease difficult to diagnose and indicate the need to further study its origins and treatments. This review will focus on the various aspects of the amyloidogenic plasma cell clone, as learnt from the patient care and clinics, and its implications on basic as well as clinical trials of AL research. Details regarding the etiology of the plasma cell clone, understanding the diagnosis of AL, and improvement of patient care with specific consideration of the future perspectives of individualized patient therapy will be described.


Sign in / Sign up

Export Citation Format

Share Document