secretion process
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 1)

Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 574
Author(s):  
Drusilla L. Burns

Production and secretion of pertussis toxin (PT) is essential for the virulence of Bordetella pertussis. Due to the large oligomeric structure of PT, transport of the toxin across bacterial membrane barriers represents a significant hurdle that the bacteria must overcome in order to maintain pathogenicity. During the secretion process, PT undergoes a two-step transport process. The first step involves transport of the individual polypeptide chains of PT across the inner membrane utilizing a generalized secretion pathway, most likely the bacterial Sec system. The second step involves the use of a specialized apparatus to transport the toxin across the outer membrane of the bacterial cell. This apparatus, which has been termed the Ptl transporter and which is unique to the PT secretion pathway, is a member of the type IV family of bacterial transporters. Here, the current understanding of the PT secretion process is reviewed including a description of the Ptl proteins that assemble to form the transporter, the general structure of type IV transporters, the known similarities and differences between canonical type IV substrate transport and Ptl-mediated transport of PT, as well as the known sequence of events in the assembly and secretion of PT.


2021 ◽  
Author(s):  
Chung-Ling Lu ◽  
Jacob Cain ◽  
Jon Brudvig ◽  
Steven Ortmeier ◽  
Simeon A. Boyadjiev ◽  
...  

ABSTRACTProcollagen requires COPII coat proteins for export from the endoplasmic reticulum (ER). SEC24 is the major component of the COPII proteins that selects cargo during COPII vesicle assembly. There are four paralogs (A to D) of SEC24 in mammals, which are classified into two subgroups. Pathological mutations in SEC24D cause osteogenesis imperfecta with craniofacial dysplasia in humans and sec24d mutant fish also recapitulate this phenotypes. Consistent with the skeletal phenotypes, the secretion of collagen was severely defective in mutant fish, emphasizing the importance of SEC24D in collagen secretion. However, SEC24D patient-derived fibroblasts show only a mild secretion phenotype, suggesting tissue-specificity in the secretion process. To explore this possibility, we generated Sec24d knockout (KO) mice. Homozygous KO mice died prior to bone development. When we analyzed embryonic and extraembryonic tissues of mutant animals, we observed tissue-dependent defects of procollagen processing and ER export. The spacial patterns of these defects mirrored with SEC24B deficiency. By systematically knocking down the expression of Sec24 paralogs, we determined that, in addition to SEC24C and SEC24D, SEC24A and SEC24B also contribute to collagen secretion. In contrast, fibronectin 1 preferred either SEC24C or SEC24D. On the basis of our results, we propose that procollagen interacts with multiple SEC24 paralogs for efficient export from the ER, and that this is the basis for tissue-specific phenotypes resulting from SEC24 paralog deficiency.


2021 ◽  
Vol 22 (4) ◽  
pp. 2203 ◽  
Author(s):  
Chaoxia Lu ◽  
Fang Yuan ◽  
Jianrong Guo ◽  
Guoliang Han ◽  
Chengfeng Wang ◽  
...  

Soil salinization is a serious and growing problem around the world. Some plants, recognized as the recretohalophytes, can normally grow on saline–alkali soil without adverse effects by secreting excessive salt out of the body. The elucidation of the salt secretion process is of great significance for understanding the salt tolerance mechanism adopted by the recretohalophytes. Between the 1950s and the 1970s, three hypotheses, including the osmotic potential hypothesis, the transfer system similar to liquid flow in animals, and vesicle-mediated exocytosis, were proposed to explain the salt secretion process of plant salt glands. More recently, increasing evidence has indicated that vesicular transport plays vital roles in salt secretion of recretohalophytes. Here, we summarize recent findings, especially regarding the molecular evidence on the functional roles of vesicular trafficking in the salt secretion process of plant salt glands. A model of salt secretion in salt gland is also proposed.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sandra M. Ferreira ◽  
José M. Costa-Júnior ◽  
Mirian A. Kurauti ◽  
Nayara C. Leite ◽  
Fernanda Ortis ◽  
...  

ARHGAP21 is a RhoGAP protein implicated in the modulation of insulin secretion and energy metabolism. ARHGAP21 transient-inhibition increase glucose-stimulated insulin secretion (GSIS) in neonatal islets; however, ARHGAP21 heterozygote mice have a reduced insulin secretion. These discrepancies are not totally understood, and it might be related to functional maturation of beta cells and peripheral sensitivity. Here, we investigated the real ARHGAP21 role in the insulin secretion process using an adult mouse model of acute ARHGAP21 inhibition, induced by antisense. After ARHGAP21 knockdown induction by antisense injection in 60-day old male mice, we investigated glucose and insulin tolerance test, glucose-induced insulin secretion, glucose-induced intracellular calcium dynamics, and gene expression. Our results showed that ARHGAP21 acts negatively in the GSIS of adult islet. This effect seems to be due to the modulation of important points of insulin secretion process, such as the energy metabolism (PGC1α), Ca2+ signalization (SYTVII), granule-extrusion (SNAP25), and cell-cell interaction (CX36). Therefore, based on these finds, ARHGAP21 may be an important target in Diabetes Mellitus (DM) treatment.


2020 ◽  
pp. 227-244
Author(s):  
R. Farkaš ◽  
M. Beňo ◽  
D. Beňová-Liszeková ◽  
I. Raška ◽  
O. Raška

Transcellular trafficking in which various molecules are transported across the interior of a cell, is commonly classified as transcytosis. However, historically this term has been used synonymously with transudation. In both cases transcellular trafficking starts with the internalization of proteins or other compounds on the basal or basolateral side of a cell and continues by their transport across the interior to the apical pole (or vice versa) where they are subsequently released. This allows a cell to release products which are synthesized elsewhere. Here, we discuss the common features of both transcytosis and transudation, and that which differentiates them. It appears that transcytosis and transudation are identical in terms of vesicular import and endosomal sorting of cargo, but completely differ in the re-secretion process. Specialized epithelial cells re-release substantial quantities of the endocytosed material, and often also a great variety. Some recent studies indicate that this is achieved by non-canonical apocrine secretion rather than by the regular vesicular mechanism of exocytosis, and takes place only on the apical pole. This massive re-release of endocytosed proteins, and potentially other compounds via the apocrine mechanism should be considered as transudation, distinct from transcytosis.


Sign in / Sign up

Export Citation Format

Share Document