scholarly journals Memory and nonlocal effects of heat transport in a spherical nanoparticle

2021 ◽  
Vol 2116 (1) ◽  
pp. 012055
Author(s):  
Francesc Font

Abstract In this paper a mathematical model describing the heat transport in a spherical nanoparticle subject to Newton heating at its surface is presented. The governing equations involve a phonon hydrodynamic equation for the heat flux and the classical energy equation that relates the heat flux and the temperature. Assuming radial symmetry the model is reduced to two partial differential equation, one for the radial component of the flux and one for the temperature. We solve the model numerically by means of finite differences. The resulting temperature profiles show characteristic wave-like behaviour consistent with the non Fourier components in the hydrodynamic equation.

2011 ◽  
Vol 133 (9) ◽  
Author(s):  
Shun Ching Lee ◽  
Tzu-Min Chen

Abstract The behavior of cryogenic nitrogen in a room-temperature evaporator six meters long is analyzed. Trapezoid fins are employed to enhance the heat flux supplied by the environment. The steady-state governing equations specified by the mixed parameters are derived from the conservations of momentum and energy. The initial value problem is solved by space integration. The fixed ambient conditions are confirmed by way of the meltback effect. An integrated model is utilized to analyze the convective effect of two-phase flow, which dominates the evaporation behavior. Another integrated model is employed to determine the total heat flux from the environment to the wet surface of the evaporator. The foundation of the formation of an ice layer surrounding the evaporator is presented. If the fin height is shorter than 0.5 m, the whole evaporator is surrounded by ice layer. If the fin height is longer than 0.5 m, the total pressure drop of nitrogen in the tube is negligible. The outlet temperature is always within the range between −12 °C and 16 °C for the evaporator with the fin height of 1.0 m. For the evaporator with dry surface, the nitrogen has the outlet temperature less than the ambient temperature at least by 5 °C.


2017 ◽  
Vol 9 (2) ◽  
pp. 463-484 ◽  
Author(s):  
Ammar I. Alsabery ◽  
Habibis Saleh ◽  
Ishak Hashim

AbstractEffects of viscous dissipation and radiation on MHD natural convection in oblique porous cavity with constant heat flux is studied numerically in the present article. The right inclined wall is maintained at a constant cold temperatureTcand the left inclined wall has a constant heat fluxqwith lengthS, while the remainder of the left wall is adiabatic. The horizontal walls are assumed to be adiabatic. The governing equations are obtained by applying the Darcy model and Boussinesq approximations. COMSOL's finite element method is used to solve the non-dimensional governing equations together with specified boundary conditions. The governing parameters of this study are Rayleigh number (Ra=10,100,200,250,500 and 1000), Hartmann number (0≤Ha≤20), inclination angle of the magnetic field (0° ≤ω≤π/2), Radiation (0≤R≤15), the heater flux length (0.1≤H≤1) and inclination angle of the sloping wall (–π/3≤ϕ≤π/3). The results are considered for various values of the governing parameters in terms of streamlines, isotherms and averageNusselt number. It is found that the intensity of the streamlines and the isotherm patterns decrease with an increment in Hartmann number. The overall heat transfer is significantly increased with the increment of the viscous dissipation and the radiation parameters.


Author(s):  
Marcelo J. S. deLemos ◽  
Paulo H. S. Carvalho

This paper presents computations for natural convection within a porous cavity filled with a fluid saturated permeable medium. The finite volume method in a generalized coordinate system is applied. The walls are maintained at constant but different temperatures, while the horizontal walls are kept insulated. Governing equations are written in terms of primitive variables and are recast into a general form. Flow and heat transfer characteristics are investigated for two energy models and distinct solid-to-fluid thermal conductivity ratio.


Author(s):  
Arkadiusz Urzędowski ◽  
Joanna Styczeń ◽  
Magdalena Paśnikowska-Łukaszuk

The article presents the mechanisms of heat exchange in building partitions along with a description of the phenomena occurring there. The methods of heat transport on selected examples of the construction of sandwich building walls were presented and discussed. A review of the methods allowing to determine the heat flux value by means of analytical methods and simulations based on numerical analyzes was carried out. The methodology of solving thermal problems has been presented, indicating the complexity of the phenomena occurring at the contact points of surfaces, for which the correct characteristics should be selected in more than one selected form of determining temperature distributions. Heat transport simulation was performed in ANSYS Fluent 2020 R2 software. The value of the heat flux density flowing through the outer wall of a single-family house located in Lublin, Poland was analytically determined. Three different structural wall solutions were adopted: one, two and three-layer. The obtained results were presented in a tabular manner, allowing for a clear verification of the correctness of the calculations performed with both selected methods.


1999 ◽  
Vol 121 (2) ◽  
pp. 240-246 ◽  
Author(s):  
Y. Yasui ◽  
K. Shizawa ◽  
K. Takahashi

The essence of macroscopic quantities in solid mechanics can be grasped by expressing these quantities in terms of kinematic and mechanical quantities of atoms. In this paper, a method is proposed for obtaining the microscopic definitions of internal forces of continua such as stress, higher-order stresses and heat flux. Moreover, the relation between higher-order stress power and heat flux is discussed expressing the first law of thermodynamics with microscopic quantities in the mesodomain. Comparing heat flux with higher-order stress power, it is clarified that the divergence of heat flux is equivalent to the total of each order power due to higher-order stresses.


1970 ◽  
Vol 4 ◽  
pp. 30-36
Author(s):  
Bernard R. Durney

AbstractThe equations for a rotating convective spherical shell are solved in the Herring approximation as an initial value problem. The main results are (1)The most unstable modes (those that maximize the heat flux) correspond to convective cells stretching from pole to pole.(2)The calculations of the Reynolds stresses show transport of angular momentum towards the equator. That is, differential rotation sets in with equatorial acceleration.(3)The convective heat transport is maximum at the equator. This would give rise to an equator-pole flux difference.(4)If convection is non-axisymmetric (as in the most unstable modes) there are no time independent solutions. The time dependence is oscillatory and of the form ωt + mφ.


2018 ◽  
Vol 32 (20) ◽  
pp. 1850217
Author(s):  
Peng Kong ◽  
Zhengzheng Wei ◽  
Tao Hu ◽  
Yi Tang

Using nonequilibrium molecular dynamics simulations, we investigate thermal rectification in mass-graded lattices with a new type on-site potential which has a physical picture of the double-well. By adjusting the ratio of harmonic on-site potential and anharmonic on-site potential, we could obtain the optimal heat transport and the best thermal rectification. In addition, we observe the reversal thermal rectification by changing the ratio of on-site potential and analyzes the mechanism of thermal rectification through the power spectrum. At last, we also study the heat flux and thermal rectification in a different case of average temperature and mass gradient.


2007 ◽  
Vol 129 (8) ◽  
pp. 1048-1057 ◽  
Author(s):  
Clarisse Fournier ◽  
Marc Michard ◽  
Françoise Bataille

Steady state similarity solutions are computed to determine the temperature profiles in a laminar channel flow driven by uniform fluid injection at one or two porous walls. The temperature boundary conditions are non-symmetric. The numerical solution of the governing equations permit to analyze the influence of the governing parameters, the Reynolds and Péclet numbers. For both geometries, we deduce a scaling law for the boundary layer thickness as a function of the Péclet number. We also compare the numerical solutions with asymptotic expansions in the limit of large Péclet numbers. Finally, for non-symmetric injection, we derive from the computed temperature profile a relationship between the Nusselt and Péclet numbers.


Volume 3 ◽  
2004 ◽  
Author(s):  
R. Kempers ◽  
A. Robinson ◽  
C. Ching ◽  
D. Ewing

A study was performed to experimentally characterize the effect of fluid loading on the heat transport performance of wicked heat pipes. In particular, experiments were performed to characterize the performance of heat pipes with insufficient fluid to saturate the wick and excess fluid for a variety of orientations. It was found that excess working fluid in the heat pipe increased the thermal resistance of the heat pipe, but increased maximum heat flux through the pipe in a horizontal orientation. The thermal performance of the heat pipe was reduced when the amount of working fluid was less than required to saturate the wick, but the maximum heat flux through the heat pipe was significantly reduced at all orientations. It was also found in this case the performance of this heat pipe deteriorated once dry-out occurred.


Sign in / Sign up

Export Citation Format

Share Document