scholarly journals Soil Chemical Properties and Fire Severity Assessment Using VNIR Proximal Spectroscopy in Fire-Affected Abandoned Orchard of Mediterranean Croatia

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 129
Author(s):  
Ivana Šestak ◽  
Paulo Pereira ◽  
Leon Josip Telak ◽  
Aleksandra Perčin ◽  
Iva Hrelja ◽  
...  

This paper aims to evaluate the ability of VNIR proximal soil spectroscopy to determine post-fire soil chemical properties and discriminate fire severity based on soil spectra. A total of 120 topsoil samples (0–3 cm) were taken from 6 ha of unburned (control (CON)) and burned areas (moderate fire severity (MS) and high fire severity (HS)) in Mediterranean Croatia within one year after the wildfire. Partial least squares regression (PLSR) and an artificial neural network (ANN) were used to build calibration models of soil pH, electrical conductivity (EC), CaCO3, plant-available phosphorus (P2O5) and potassium (K2O), soil organic carbon (SOC), exchangeable calcium (exCa), magnesium (exMg), potassium (exK), sodium (exNa), and cation exchange capacity (CEC), based on soil reflectance data. In terms of fire severity, CON samples exhibited higher average reflectance than MS and HS samples due to their lower SOC content. The PCA results pointed to the significance of the NIR part of the spectrum for extracting the variance in reflectance data and differentiation between the CON and burned area (MS and HS). DA generated 74.2% correctly classified soil spectral samples according to the fire severity. Both PLSR and ANN calibration techniques showed sensitivity to extract information from soil features based on hyperspectral reflectance, most successfully for the prediction of SOC, P2O5, exCa, exK, and CEC. This study confirms the usefulness of soil spectroscopy for fast screening and a better understanding of soil chemical properties in post-fire periods.

Author(s):  
C. V. Ogbenna ◽  
V. E. Osodeke

Aim: A pot experiment was carried out to determine the effect of sawdust ash and lime (Ca(OH)2) on soil characteristics and yield of sunflower in acidic soil of southeastern Nigeria. Study Design: The experiment was laid out in split-plot design, using sawdust ash (0, 1, 2, 3, 4 t ha-1) as the sub plot and lime (0, 0.5, 1.0, 1.5 t ha-1) as the main plot. Place and Duration of Study: Study was conducted outdoors at Michael Okpara University of Agriculture Umudike, Nigeria, during the 2010 planting season. Materials and Methods: Treatment combinations were applied to the 60 buckets containing soil, mixed thoroughly and watered adequately. After 1 week of treatment application, two sunflower seeds were planted and later thinned to one seedling per bucket. Plant growth and yield data were collected. Pre planting and post-harvest soil samples were collected and analyzed for soil properties. Results: Results showed that with the exception of organic carbon there was significant effect of treatments on all soil chemical properties. Lime and sawdust ash (SDA) as single and combined treatments significantly increased total nitrogen (P=0.05), available phosphorus (P<0.010), and base saturation (P<0.012). The interaction between SDA and lime significantly (P=0.05) increased total exchangeable bases and effective cation exchange capacity, while soil pH was significantly increased (P=0.05) by single applications. The increases in soil chemical properties led to significant positive response of the sunflower. With the exception of number of leaves, other plant parameters (Plant height, stem diameter, head weight, 50 seed weight, head diameter) had significant increases for sawdust ash alone at P=0.05. Correlation studies showed positive significant relationship between soil pH and sunflower yield. Conclusion: The study showed that sunflower performed best at the combination of 3 tha-1 SDA and 1.5 t ha-1 lime producing a mean head weight of 45.4 g.


2011 ◽  
Vol 70 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Necattin Türkmen ◽  
Atabay Düzenli

Early post-fire changes inPinus brutiaforests (Amanos Mountains, Turkey)We studied the species composition and soil nutrients in aPinus brutiaforest after a fire that occurred in 1989. Four permanent plots were created in the burnt and not burnt areas in the Amanos Mountains of Turkey. The floristic richness, biological spectra, above ground phytomass and soil features in the study areas were assessed during the first three years after the fire. After the fire, we found a reduced amount of organic matter (14.3%), total nitrogen (22%) and soil water saturation (13.1%), but an increased amount of available phosphorus (71%), acidity (3.6%), cation exchange capacity (9.9%), exchangeable sodium (20.8%) and exchangeable potassium (37.1%). The aboveground phytomass in the burned area reached 5284 kg ha-1, the third year after the fire. Forty-six pre-fire species were renewed in the first three years after the fire.Juniperus oxycedruscould not renew within three years after the fire. Pine phytomass has increased five times within three years after the fire.


2019 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Ronggo Sadono ◽  
Djoko Soeprijadi ◽  
Pandu Yudha Adi Putra Wirabuana

Soil chemical properties play important roles to support plant growth. It determines the nutrient availability which is required by the plant. This study aimed to identify the influence of soil chemical properties on cajuput stand growth. It was conducted in Forest Resort Gubugrubuh, Gunungkidul District. Data collection was undertaken in 3 sites that became the priority sites of cajuput establishment, namely site 75, site 78, and site 80. It was divided into soil sample collection and cajuput stand measurement. The soil sample was collected from surface layer at depth of 0-15 cm. Afterward, it was tested in the laboratory for soil pH, soil organic carbon, total nitrogen, available phosphorus, total potassium, and cation exchange capacity (CEC). The measurement of cajuput stand was carried out by N-trees sampling. The variable of the stand was described by diameter and basal area. Comparison of soil chemical properties and cajuput stand growth from each site were analyzed using One Way ANOVA (α=0.05) followed by HSD Tukey (α=0.05). Furthermore, we used Stepwise Regression (α=0.05) to identify the influence of soil chemical properties on cajuput stand growth. The results showed that total nitrogen was the only soil chemical parameter that was significantly different between sites (p<0.05). However, the growth of cajuput stands was not significantly different between sites (p<0.05). This study found that available phosphorus and cation exchange capacity had clearly influenced on diameter and basal area.


Author(s):  
E. O. Azu Donatus ◽  
B. A. Essien ◽  
O. U. Nwanja ◽  
P. E. Nweke

The present study investigated the combined effect of rice husk dust (RHD) (0.1.2.3.4 and 5 ton ha-1) and NPK 10:10:10 fertilizer (0, 1, 2, 3, 4 and 5 ton ha-1) arranged factorially in Randomized Complete Block Design(RCBD)on selected soil fertility indices (pH, organic carbon, organic matter, total nitrogen, available phosphorus, exchangeable bases, exchangeable acidity and effective cation exchange capacity) and growth parameters of Jatropha (number of leaves, plant height, number of branches and stem girth) in an ultisol of southeastern Nigeria. Results showed significant (P<0.05) improvement in all soil chemical properties and growth parameters of plant compared to control which had no treatment. However, the effects varied with treatment levels and interactions. While the effects increased with rate of application, interactions consistently showed superior effect on all parameters studied. Thus, combining rice husk dust (RHD) and NPK may increase the soil fertility and growth of Jatropha. Treatments combination of5tonha-1 RHD and 3tonha-1 NPK and 5tonha-1 RHD and 5tonha-1 NPK relatively gave the most appreciable result in soil chemical properties and growth of Jatropha respectively, thus are recommended.


2017 ◽  
Vol 8 (1) ◽  
pp. 55-62
Author(s):  
Lailan Syaufina ◽  
Vera Linda Purba

Forest fire is one of the problem in forest management. The objectives of the study was to measure the forest fire severity based on soil physical and chemical properties. The forest fire effects were assessed using fire severity method and forest health monitoring plot. The study indicated that the burned areas at BKPH Parung Panjang after two years included in low fire severity. The site properties and growth performance analysis showed that the fire has only affected on pH, Mg and tree diameter significantly, whereas the other parameters such as bulk density, P, N, Na, K, Ca and height were not significantly affected. In addition, both burned and unburned areas are classified as in health condition.Key words : fire severity, forest health monitoring, growth performance, site properties


Author(s):  
Vítězslav Vlček ◽  
Miroslav Pohanka

Soil samples (n = 11) were collected in the chernozem areas of the Czech Republic (the Central Europe) from the topsoil and used as representative samples. All sampling areas have been used for agricultural purposes (arable soil) and they were selected as typical representatives of agricultural soil. These samples represented the soil with same genesis (to reduction differencies between soil types) but with different soil properties (physical and chemical). Complete chemical and physical analyses were made for confirmation of copper adsorption on solid phase: we analysed the particle size distribution, content of oxidizable carbon (Cox), the cation exchange capacity (CEC), supply of exchange calcium, magnesium, sodium, phosphorus and potassium, soil reaction and the total supply of Fe, Al, Mn, Ca, Mg, K, P and N. The strongest simple correlation between analysed soil properties and copper concentration had content of available magnesium (r = 0.44) and available phosphorus (r = −0.51). In the case of multiple correlations (i. e. collective influence of multiple soil properties) had the strongest influence combination of clay, soil reaction, total content of phosphorus, available magnesium and available phosphorus. The main influence of phosphorus and magnesium is evident. We suppose that copper and phosphorus enter into specific complex. Influence of these five soil properties can explain 92.7 % (r = 0.927) changes in the content of copper changes in the experiment.


Agro-Science ◽  
2020 ◽  
Vol 19 (3) ◽  
pp. 51-61
Author(s):  
F.C. Okenmuo ◽  
C.O. Anochie ◽  
M.E. Ukabiala ◽  
C.L.A. Asadu ◽  
P.K. Kefas ◽  
...  

The soils of Atani floodplain in Anambra State of Nigeria contribute significantly to the food production of the State, hence the need to understand their behavior in order to enhance their management and productivity. Profile pits were sited along three physiographic units viz: levee crest, levee  slope and flood basin. Soil samples were collected from the profile horizons and subjected to standard laboratory procedures. Characterization of the soils was based on their morphological, physical and chemical properties. Soil classification was carried out using the USDA Soil Taxonomy and correlated with FAO/IUSS World Reference Base. Its agricultural potential was assessed using the fertility capability classification. The soils were deep. Topsoil colour was dominantly blackish black (10YR 3/2). Mottles were pervasive; an indication of impeded drainage conditions. The soils were predominantly fine textured. Soil pH values ranged from 4.8 to 6.2. Exchangeable Calcium was low to moderate (2.6-8.2 cmol kg−1); Magnesium was moderate to high (1.6-6.8 cmol kg−1); Sodium was high to very high (1.0-2.5 cmol kg−1), while potassium was high (1.2-4.2 cmol kg−1). Cation  exchange capacity values ranged from 11.6 to 42.6 cmol kg−1. Total nitrogen was very low to low (0.14-1.12 g kg−1), while organic carbon was low to moderate (0.4-15.2 g kg−1). Available phosphorus was very low to high ranging from 0.93 to 31.71 mg kg−1 while base saturation ranged from 64 to 93%. The soils were classified as Typic Fluvaquents (Typic Fluvisols), Fluvaquentic Endoaquepts (Endostagnic Cambisols) and Fluventic Endoaquepts (Endostagnic Cambisols) according to the USDA and FAO/IUSS. The fertility capability evaluation of the soils revealed that the pedons were Lgn in classification due to limitations in drainage. Key words: alluvium, cambic horizon, Inceptisols, lithologic discontinuity


2020 ◽  
Vol 6 ◽  
pp. 115-126
Author(s):  
Shukra Raj Shrestha ◽  
Jiban Shrestha ◽  
Sanjeet Kumar Jha ◽  
Dinesh Khadka ◽  
Prakash Paneru ◽  
...  

Field experiments were conducted for four years (2014-2017) at five locations namely Salbani, Bhokraha, Simariya, Bhaluwa and Kaptanganj of Sunsari district to assess the changes in soil chemical properties under conservation agriculture (CA)-based practices in two cropping systems namely rice-kidney bean-maize at Salbani and rice-wheat at rest of the locations. In rice-wheat cropping system, there were four treatments: (1) conventional tillage (CT) for rice transplantation and subsequent wheat sowing, (2) conventional tillage rice transplantation followed by zero tillage (ZT) wheat, (3) unpuddled rice transplantation followed by zero tillage wheat, (4) zero tillage in both rice and wheat. Similarly, in rice-kidney bean-maize cropping system, there were four treatments; (1) conventional tillage for rice transplantation and sowing of both kidney bean and maize, (2) conventional tillage rice transplantation followed by zero tillage in both kidney bean and maize, (3) unpuddled rice transplantation followed by zero tillage in both kidney bean and maize, (4) zero tillage in all three crops. Soil samples were taken at initial and every year after rice harvest.The soil samples were analyzed for total nitrogen, available phosphorus, available potassium, pH and soil organic matter.Total nitrogen (N) showed a slightly decreasing trend in the first three years and showed a slight increase at the end of experiment under ZT in all locations. The total N under ZT changed from 0.12 to 0.13%, 0.05 to 0.06%, 0.10 to 0.12%, 0.11 to 0.08% and 0.09 to 0.13% in Salbani, Bhokraha, Simariya, Bhaluwa and Kaptanganj, respectively.  All locations showed the positive values of available potassium; Salbani  revealing considerable change of 64.3 to 78.5 mg/kg in CT while 68.4 to 73.3 mg/kg in ZT condition. The treatment where rice was transplanted in unpuddled condition and zero tilled to wheat, had a mean value of available phosphorus and potassium as 87.3 and 81.9 mg/kg respectively. Soil pH ranged from 4.8 to 7.1 in CT while it was 5.2 to 6.8 in ZT across the locations. The change in soil organic matter in CT of all locations except Salbani was narrower as compared to ZT.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4071 ◽  
Author(s):  
Marcos Vinícius Mansano Sarto ◽  
Maria do Carmo Lana ◽  
Leandro Rampim ◽  
Jean Sérgio Rosset ◽  
Jaqueline Rocha Wobeto

<p>An improvement in soil chemical properties and crop development with silicate application has been confirmed in several plant species. The effects of silicate application on soil chemical properties and wheat growth were investigated in the present study. The experiment was carried out in 8-L plastic pots in a greenhouse. Treatments were arranged in a randomized block design in a 3 × 5 factorial: three soils [Rhodic Acrudox (Ox1), Rhodic Hapludox (Ox2) and Arenic Hapludult (Ult)] and five silicate rates (0, 1, 2, 4 and 6 Mg ha–1 of calcium/magnesium silicate), with four replications. The plant length, number of spikes per pot, shoot dry matter and grain yield, were measured after 115 days of wheat (<em>Triticum aestivum </em>L.) growth. Changes in the soil chemical properties (pH, H+ + Al3+, Al3+, P, K, Ca, Mg, Si, Cu, Zn, Fe and Mn) were analyzed after wheat harvest. Application of calcium/magnesium silicate reduces the potential acidity (H+ + Al3+) and Al3+ phytotoxic; and increases the soil pH, available Ca, Mg and Si, cation exchange capacity (CEC) and soil base saturation. Silicate application did not affect the available P, exchangeable K and availability of micronutrients (Cu, Zn, Fe and Mn) in the three soils. The application of calcium/magnesium silicate in an acid clayey Rhodic Hapludox improves the development and yield of wheat; however, the silicate application in soil with pH higher to 5.3 and high Si availability does not affect the agronomic characteristics and grain yield of wheat.</p><p><strong> </strong></p>


1999 ◽  
Vol 50 (2) ◽  
pp. 261 ◽  
Author(s):  
Penny A. Riffkin ◽  
Paul E. Quigley ◽  
Gavin A. Kearney ◽  
Fiona J. Cameron ◽  
Robert R. Gault ◽  
...  

A survey of 71 sites was conducted in the dairying districts of south-western Victoria in October 1994 to determine factors associated with nitrogen (N) fixation in white clover based pastures. Twenty-eight factors (environmental, microbiological, management, soil, and pasture) were considered in relation to 2 indicators of N fixation by white clover, %Ndfa (percentage of total plant N derived from the atmosphere, as determined by the 15N natural abundance method) and kg of N fixed per tonne herbage dry matter (legume and non-legume). On light-textured soils (sandy loams), soil potassium, rhizobia numbers, total soil N, and density of the nematode Pratylenchus sp. accounted for 72% of variation in %Ndfa. On medium-textured soils (clay loams), crude protein of perennial ryegrass and plant-available phosphorus in the soil accounted for 30% of variation in %Ndfa. The amount of N fixed was influenced by different factors, again depending on soil texture. Soil chemical properties accounted for 31% variation on the medium-textured soils with nematode density, pasture quality, and soil chemical properties accounting for 77% of variation on light-textured soils. Amounts of N fixed per tonne herbage dry matter produced averaged 8.2 kg on the light-textured soils and 7.3 kg on the medium-textured soils. Average %Ndfa values were 67% and 60% on light- and medium-textured soils, respectively. Effects of soil texture on N fixation were attributed to the different cation exchange and water-holding capacities of the soils and highlight the importance of considering soil type in N fixation studies.


Sign in / Sign up

Export Citation Format

Share Document