scholarly journals De novo apical domain formation inside the Drosophila adult midgut epithelium

2021 ◽  
Author(s):  
Jia Chen ◽  
Daniel St Johnston

AbstractIn the adult Drosophila midgut, basal intestinal stem cells give rise to enteroblasts that integrate into the epithelium as they differentiate into enterocytes. Integrating enteroblasts must generate a new apical domain and break through the septate junctions between neighboring enterocytes, while maintaining barrier function. We observe that enteroblasts form an apical membrane initiation site when they reach the septate junction between the enterocytes. Cadherin clears from the apical surface and an apical space appears above the enteroblast. New septate junctions then form laterally with the enterocytes and the AMIS develops into pre-apical compartment before it has a free apical surface in contact with the gut lumen. Finally, the enterocyte septate junction dissolves and the pre-enterocyte reaches the gut lumen with a fully-formed brush border. The process of enteroblast integration resembles lumen formation in mammalian epithelial cysts, highlighting the similarities between the fly midgut and mammalian epithelia.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li-Ting Wang ◽  
Abira Rajah ◽  
Claire M. Brown ◽  
Luke McCaffrey

AbstractPolarized epithelial cells can organize into complex structures with a characteristic central lumen. Lumen formation requires that cells coordinately orient their polarity axis so that the basolateral domain is on the outside and apical domain inside epithelial structures. Here we show that the transmembrane aminopeptidase, CD13, is a key determinant of epithelial polarity orientation. CD13 localizes to the apical membrane and associates with an apical complex with Par6. CD13-deficient cells display inverted polarity in which apical proteins are retained on the outer cell periphery and fail to accumulate at an intercellular apical initiation site. Here we show that CD13 is required to couple apical protein cargo to Rab11-endosomes and for capture of endosomes at the apical initiation site. This role in polarity utilizes the short intracellular domain but is independent of CD13 peptidase activity.


1974 ◽  
Vol 52 (1) ◽  
pp. 125-149 ◽  
Author(s):  
Kam Yee Kiew

Development of the floret of Oryzopsis virescens and O. hymenoides was studied. Evidence from this study and from other studies on grass floret development has brought the following interpretations. Histogenesis of the lemma, palea, posterior lodicule, and gynoecial wall is similar, and indicates their foliar nature. They are determinate organs, have a shallow site of initiation, and exhibit marginal growth. The anterior lodicules differ from them in having a deeper initiation site. The interpretation of the anterior and posterior lodicules as reduced perianth structures of one whorl rather than as structures de novo is preferred. The callus is formed by the downward projection of the base of the lemma. Developmentally, the stamens are stem-like. The gynoecium consists of a unit ascidiform gynoecial wall surrounding a terminal ovule. There are two styles, each of which develops from a lateral portion of the gynoecial wall. The floret apex is not used up in the formation of the gynoecial wall. The residual floret apex develops into the ovule. The grass gynoecium may be considered acarpellate.


1979 ◽  
Vol 37 (1) ◽  
pp. 373-389
Author(s):  
H.B. Skaer ◽  
J.B. Harrison ◽  
W.M. Lee

Smooth septate junctions in the midgut of Musca domestica and in Malpighian tubules of both Musca and Rhodnius prolixus are described. Details of the structures revealed after standard fixation, fixation in the presence of the stain, lanthanum hydroxide, and after freeze-fracture are discussed in the light of models previously put forward to explain the interrelations of the images obtained by these different methods. The organization of the junction between cells of the midgut varies in the apical-to-basal axis. At the apical border the septa (or ridges in freeze-fracture replicas) are packed tightly and follow an undulating but strictly parallel course. This packing loosens towards the middle of the junction until, at its basal extremity, the septa (ridges in replicas) are widely separated and follow independent meandering courses. That these features are found both in lanthanum-infiltrated specimens and freeze-fracture replicas allows a correlation to be made between the septa and the freeze-fracture ridges. The functional significance of these smooth septate junctions is discussed.


2021 ◽  
Vol 22 (17) ◽  
pp. 9516
Author(s):  
Yi Xu ◽  
David J. Baylink ◽  
Huynh Cao ◽  
Jeffrey Xiao ◽  
Maisa I. Abdalla ◽  
...  

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gut. Available drugs aim to suppress gut inflammation. These drugs have significantly delayed disease progression and improved patients’ quality of life. However, the disease continues to progress, underscoring the need to develop novel therapies. Aside from chronic gut inflammation, IBD patients also experience a leaky gut problem due to damage to the intestinal epithelial layer. In this regard, epithelial regeneration and repair are mediated by intestinal stem cells. However, no therapies are available to directly enhance the intestinal stem cells’ regenerative and repair function. Recently, it was shown that active vitamin D, i.e., 1,25-dihydroxyvitamin D or 1,25(OH)2D, was necessary to maintain Lgr5+ intestinal stem cells, actively cycling under physiological conditions. In this study, we used two strategies to investigate the role of 1,25(OH)2D in intestinal stem cells’ regenerative function. First, to avoid the side effects of systemic high 1,25(OH)2D conditions, we used our recently developed novel strategy to deliver locally high 1,25(OH)2D concentrations specifically to inflamed intestines. Second, because of the Lgr5+ intestinal stem cells’ active cycling status, we used a pulse-and-chase strategy via 5-bromo-2′-deoxyuridine (BrdU) labeling to trace the Lgr5+ stem cells through the whole epithelial regeneration process. Our data showed that locally high 1,25(OH)2D concentrations enhanced intestinal stem cell migration. Additionally, the migrated cells differentiated into mature epithelial cells. Our data, therefore, suggest that local delivery of high 1,25(OH)2D concentrations is a promising strategy to augment intestinal epithelial repair in IBD patients.


1989 ◽  
Vol 93 (1) ◽  
pp. 123-131
Author(s):  
NANCY J. LANE ◽  
STEPHEN M. DILWORTH

Septate junctions are found only in invertebrate tissues, and are almost ubiquitous within them. In arthropods, the two major types are the ‘pleated’ and the ‘smooth’ varieties. Using tissues from different species, including the cockroach Periplaneta americana, procedures have been established for obtaining membrane fractions selectively enriched in septate junctions. The junctions have been identified in pellets of these fractions by both thin sectioning and freeze-fracturing. SDS-PAGE of these membrane fractions reveals two major polypeptide species with apparent molecular weights of 22000–24000 and 17000–18000. Consistent differences in these apparent molecular weights are observed between the pleated and smooth varieties of septate junction. These polypeptides are probably integral membrane components, as they remain associated after treatment with high concentrations of urea. Evidence suggests a plane of weakness in the mid-line of the extracellular septal ribbons.


1998 ◽  
Vol 275 (5) ◽  
pp. G1045-G1055 ◽  
Author(s):  
An-Qiang Sun ◽  
Meenakshisundaram Ananthanarayanan ◽  
Carol J. Soroka ◽  
Sundararajah Thevananther ◽  
Benjamin L. Shneider ◽  
...  

The rat ileal apical Na+-dependent bile acid transporter (ASBT) and the liver Na+-taurocholate cotransporting polypeptide (Ntcp) are members of a new family of anion transporters. These transport proteins share limited sequence homology and almost identical predicted secondary structures but are localized to the apical surface of ileal enterocytes and the sinusoidal surface of hepatocytes, respectively. Stably transfected Madin-Darby canine kidney (MDCK) cells appropriately localized wild-type ASBT and Ntcp apically and basolaterally as assessed by functional activity and immunocytochemical localization studies. Truncated and chimeric transporters were used to determine the functional importance of the cytoplasmic tail in bile acid transport activity and membrane localization. Two cDNAs were created encoding a truncated transporter in which the 56-amino-acid COOH-terminal tail of Ntcp was removed or substituted with an eight-amino-acid epitope FLAG. For both mutants there was some loss of fidelity in basolateral sorting in that ∼75% of each protein was delivered to the basolateral surface compared with ∼90% of the wild-type Ntcp protein. In contrast, deletion of the cytoplasmic tail of ASBT led to complete loss of transport activity and sorting to the apical membrane. An Ntcp chimera in which the 56-amino-acid COOH-terminal tail of Ntcp was replaced with the 40-amino-acid cytoplasmic tail of ASBT was largely redirected (82.4 ± 3.9%) to the apical domain of stably transfected MDCK cells, based on polarity of bile acid transport activity and localization by confocal immunofluorescence microscopy. These results indicate that a predominant signal for sorting of the Ntcp protein to the basolateral domain is located in a region outside of the cytoplasmic tail. These studies have further shown that a novel apical sorting signal is localized to the cytoplasmic tail of ASBT and that it is transferable and capable of redirecting a protein normally sorted to the basolateral surface to the apical domain of MDCK cells.


Science ◽  
2020 ◽  
Vol 370 (6522) ◽  
pp. eabd2703
Author(s):  
Meng Zhu ◽  
Jake Cornwall-Scoones ◽  
Peizhe Wang ◽  
Charlotte E. Handford ◽  
Jie Na ◽  
...  

Embryo polarization is critical for mouse development; however, neither the regulatory clock nor the molecular trigger that it activates is known. Here, we show that the embryo polarization clock reflects the onset of zygotic genome activation, and we identify three factors required to trigger polarization. Advancing the timing of transcription factor AP-2 gamma (Tfap2c) and TEA domain transcription factor 4 (Tead4) expression in the presence of activated Ras homolog family member A (RhoA) induces precocious polarization as well as subsequent cell fate specification and morphogenesis. Tfap2c and Tead4 induce expression of actin regulators that control the recruitment of apical proteins on the membrane, whereas RhoA regulates their lateral mobility, allowing the emergence of the apical domain. Thus, Tfap2c, Tead4, and RhoA are regulators for the onset of polarization and cell fate segregation in the mouse.


2020 ◽  
Vol 29 (20) ◽  
pp. 3388-3401 ◽  
Author(s):  
Noelle Sterling ◽  
Anna R Duncan ◽  
Raehee Park ◽  
David A Koolen ◽  
Jiahai Shi ◽  
...  

Abstract Membrane Protein Palmitoylated 5 (MPP5) is a highly conserved apical complex protein essential for cell polarity, fate and survival. Defects in cell polarity are associated with neurologic disorders including autism and microcephaly. MPP5 is essential for neurogenesis in animal models, but human variants leading to neurologic impairment have not been described. We identified three patients with heterozygous MPP5 de novo variants (DNV) and global developmental delay (GDD) and compared their phenotypes and magnetic resonance imaging (MRI) to ascertain how MPP5 DNV leads to GDD. All three patients with MPP5 DNV experienced GDD with language delay/regression and behavioral changes. MRI ranged from normal to decreased gyral folding and microcephaly. The effects of MPP5 depletion on the developing brain were assessed by creating a heterozygous conditional knock out (het CKO) murine model with central nervous system (CNS)-specific Nestin-Cre drivers. In the het CKO model, Mpp5 depletion led to microcephaly, decreased cerebellar volume and cortical thickness. Het CKO mice had decreased ependymal cells and Mpp5 at the apical surface of cortical ventricular zone compared with wild type. Het CKO mice also failed to maintain progenitor pools essential for neurogenesis. The proportion of cortical cells undergoing apoptotic cell death increased, suggesting that cell death reduces progenitor population and neuron number. Het CKO mice also showed behavioral changes, similar to our patients. To our knowledge, this is the first report to show that variants in MPP5 are associated with GDD, behavioral abnormalities and language regression/delay. Murine modeling shows that neurogenesis is likely altered in these individuals, with cell death and skewed cellular composition playing significant roles.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
L. I. Rathbun ◽  
E. G. Colicino ◽  
J. Manikas ◽  
J. O’Connell ◽  
N. Krishnan ◽  
...  
Keyword(s):  
De Novo ◽  

Sign in / Sign up

Export Citation Format

Share Document