scholarly journals A GPAT1 Mutation in Arabidopsis Enhances Plant Height but Impairs Seed Oil Biosynthesis

2021 ◽  
Vol 22 (2) ◽  
pp. 785
Author(s):  
Yang Bai ◽  
Yue Shen ◽  
Zhiqiang Zhang ◽  
Qianru Jia ◽  
Mengyuan Xu ◽  
...  

Glycerol-3-phosphate acyltransferases (GPATs) play an important role in glycerolipid biosynthesis, and are mainly involved in oil production, flower development, and stress response. However, their roles in regulating plant height remain unreported. Here, we report that Arabidopsis GPAT1 is involved in the regulation of plant height. GUS assay and qRT-PCR analysis in Arabidopsis showed that GPAT1 is highly expressed in flowers, siliques, and seeds. A loss of function mutation in GPAT1 was shown to decrease seed yield but increase plant height through enhanced cell length. Transcriptomic and qRT-PCR data revealed that the expression levels of genes related to gibberellin (GA) biosynthesis and signaling, as well as those of cell wall organization and biogenesis, were significantly upregulated. These led to cell length elongation, and thus, an increase in plant height. Together, our data suggest that knockout of GPAT1 impairs glycerolipid metabolism in Arabidopsis, leading to reduced seed yield, but promotes the biosynthesis of GA, which ultimately enhances plant height. This study provides new evidence on the interplay between lipid and hormone metabolism in the regulation of plant height.

2017 ◽  
Vol 23 (1) ◽  
Author(s):  
A. B. SAGADE

The study of the effect of three well known mutagens, ethyl methane sulphonate (EMS), methyl methane sulphonate (MMS) and gamma rays (GR) on the yield contributing traits of the urdbean variety TPU-4 were carried out in the M3 generation. Effect of selected mutagenic treatments/doses of EMS (0.02, 0.03 and 0.04 M), MMS (0.0025, 0.05 and 0.01 M) and (GR) (30, 40 and 50 KR) on different yield contributing traits like plant height, plant spread, number of pods per plant, pod length, number of seeds per pod, seed yield per plant and 100 seed weight were analyzed in the M3 populations of the variety TPU-4. Seeds of M2 plants and control were harvested separately and sown to raise M3 population.. Genetic variabilty in the mutagen administered M3 progeny of the urdbean variety TPU-4 was analyzed by employing statistical methods. Data on mean values and shift in the mean of seven quantitative traits was evaluated on individual plant basis. The experimental findings revealed that concentrations / dose of the all these mutagens showed inhibitory effect on plant height, number of pods per plant, pod length and number of seeds per pod. Lower concentrations of mutagens exerted a promotory effect on plant spread, 100 seed weight and seed yield per plant while higher concentrations of these mutagens inhibited them to different extent.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
PUNIT KUMAR ◽  
VICHITRA KUMAR ARYA ◽  
PRADEEP KUMAR ◽  
LOKENDRA KUMAR ◽  
JOGENDRA SINGH

A study on genetic variability, heritability and genetic advance for seed yield and component traits was made in 40 genotypes of riceduring kharif 2011-2012 at SHIATS, Allahabad. The analysis of variance showed highly significant differences among the treatments for all the 13 traits under study.The genotypes namely CN 1446-5-8-17-1-MLD4 and CR 2706 recorded highest mean performance for panicles per hill and grain yield. The highest genotypic and phenotypic variances (VG and VP) were recorded for spikelets per panicle (3595.78 and 3642.41) followed by biological yield (355.72 and 360.62) and plant height (231.48 and 234.35).High heritability (broad sense) coupled with high genetic advance was observed for plant height, flag leaf length, panicles per hill, tillers per hill, days to maturity, spikelet’s per panicle, biological yield, harvest index, 1000 grain weight and grain yield, indicating that selection will be effective based on these traits because they were under the influence of additive and additive x additive type of gene action. Highest coefficient of variation (PCV and GCV) was recorded for tillers per hill (18.42% and 17.23%), panicle per hill (19.76 % and 18.68%), spikelet’s per panicle (34.30 and34.07 %), biological yield (28.31 % and 28.12 %), 1000 grain weight (15.57 % and 15 31 %) and grain yield (46.66% and 23.54 %), indicating that these traits are under the major influence of genetic control, therefore the above mentioned traits contributed maximum to higher grain yield compared to other traits, indicating grain yield improvement through the associated traits.


2016 ◽  
Vol 3 (2) ◽  
Author(s):  
SHAILESH CHAND GAUTAM ◽  
MP Chauhan

Line × tester analysis of twenty lines and three testers of Indian mustard (Brassica juncea L. Czern & Coss.) cultivars were used to estimate general combining ability (GCA), specific combining ability (SCA) effects, high parent heterosis and narrow-sense heritability estimate for plant height, yield components and seed yield. Significant variance of line x tester for the traits like pods per plant and seed yield indicating non additive genetic effects have important role for controlling these traits. Significant mean squares of parents v/s crosses which are indicating significant average heterosis were also significant for all the traits except seeds per pod. High narrow-sense heritability estimates for all the traits except seeds per pod exhibited the prime importance of additive genetic effects for these traits except seeds per pod. Most of the crosses with negative SCA effect for plant height had at least one parent with significant negative or negative GCA effect for this trait. For most of the traits except pods per plant, the efficiency of high parent heterosis effect was more than SCA effect for determining superior cross combinations.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Rong Zhang ◽  
Weitao Jiang ◽  
Xin Liu ◽  
Yanan Duan ◽  
Li Xiang ◽  
...  

Abstract Background Apple replant disease (ARD) has been reported from all major fruit-growing regions of the world, and is often caused by biotic factors (pathogen fungi) and abiotic factors (phenolic compounds). In order to clarify the proteomic differences of Fusarium moniliforme under the action of phloridzin, and to explore the potential mechanism of F. moniliforme as the pathogen of ARD, the role of Fusarium spp. in ARD was further clarified. Methods In this paper, the quantitative proteomics method iTRAQ analysis technology was used to analyze the proteomic differences of F. moniliforme before and after phloridzin treatment. The differentially expressed protein was validated by qRT-PCR analysis. Results A total of 4535 proteins were detected, and 293 proteins were found with more than 1.2 times (P< 0.05) differences. In-depth data analysis revealed that 59 proteins were found with more than 1.5 times (P< 0.05) differences, and most proteins were consistent with the result of qRT-PCR. Differentially expressed proteins were influenced a variety of cellular processes, particularly metabolic processes. Among these metabolic pathways, a total of 8 significantly enriched KEGG pathways were identified with at least 2 affiliated proteins with different abundance in conidia and mycelium. Functional pathway analysis indicated that up-regulated proteins were mainly distributed in amino sugar, nucleotide sugar metabolism, glycolysis/ gluconeogenesis and phagosome pathways. Conclusions This study is the first to perform quantitative proteomic investigation by iTRAQ labeling and LC-MS/MS to identify differentially expressed proteins in F. moniliforme under phloridzin conditions. The results confirmed that F. moniliforme presented a unique protein profile that indicated the adaptive mechanisms of this species to phloridzin environments. The results deepened our understanding of the proteome in F. moniliforme in response to phloridzin inducers and provide a basis for further exploration for improving the efficiency of the fungi as biocontrol agents to control ARD.


2021 ◽  
Vol 9 (7) ◽  
pp. 1390
Author(s):  
Masafumi Noda ◽  
Naho Sugihara ◽  
Yoshimi Sugimoto ◽  
Ikue Hayashi ◽  
Sachiko Sugimoto ◽  
...  

Cariogenic bacteria, such as Streptococcus (S.) mutans and S. sobrinus, produce insoluble and sticky glucans as a biofilm material. The present study demonstrates that a lactic acid bacterium (LAB) named BM53-1 produces a substance that inhibits the sticky glucan synthesis. The BM53-1 strain was isolated from a flower of Actinidia polygama and identified as Lactobacillus reuteri. The substance that inhibits sticky glucan synthesis does not exhibit antibacterial activity against S. mutans. The cariogenic S. mutans produces glucans under the control of three glucosyltransferase (GTF) enzymes, named GtfB, GtfC, and GtfD. Although GtfB and GtfC produce insoluble glucans, GtfD forms soluble glucans. Through quantitative reverse-transcriptional (qRT)-PCR analysis, it was revealed that the BM53-1-derived glucan-production inhibitor (GI) enhances the transcriptions of gtfB and gtfC genes 2- to 7-fold at the early stage of cultivation. However, that of gtfD was not enhanced in the presence of the GI, indicating that the glucan stickiness produced by S. mutans was significantly weaker in the presence of the GI. Our result demonstrates that Lb. reuteri BM53-1 is useful to prevent dental caries.


Biomolecules ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 182 ◽  
Author(s):  
Merhaba Abla ◽  
Huigai Sun ◽  
Zhuyun Li ◽  
Chunxiang Wei ◽  
Fei Gao ◽  
...  

Astragalus membranaceus is an important medicinal plant widely cultivated in East Asia. MicroRNAs (miRNAs) are endogenous regulatory molecules that play essential roles in plant growth, development, and the response to environmental stresses. Cold is one of the key environmental factors affecting the yield and quality of A. membranaceus, and miRNAs may mediate the gene regulation network under cold stress in A. membranaceus. To identify miRNAs and reveal their functions in cold stress response in A. membranaceus, small RNA sequencing was conducted followed by bioinformatics analysis, and quantitative real time PCR (qRT-PCR) analysis was performed to profile the expression of miRNAs under cold stress. A total of 168 conserved miRNAs belonging to 34 families and 14 putative non-conserved miRNAs were identified. Many miRNA targets were predicted and these targets were involved in diversified regulatory and metabolic pathways. By using qRT-PCR, 27 miRNAs were found to be responsive to cold stress, including 4 cold stress-induced and 17 cold-repressed conserved miRNAs, and 6 cold-induced non-conserved miRNAs. These cold-responsive miRNAs probably mediate the response to cold stress by regulating development, hormone signaling, defense, redox homeostasis, and secondary metabolism in A. membranaceus. These cold-corresponsive miRNAs may be used as the candidate genes in further molecular breeding for improving cold tolerance of A. membranaceus.


2019 ◽  
Vol 17 (1) ◽  
pp. 33-38
Author(s):  
Swapan Kumar Paul ◽  
Mosa Morsheda Khatun ◽  
Md Abdur Rahman Sarkar

Sulphur is a component of plant amino acids, proteins, vitamins, and enzyme structures which influence the productivity of oil seed and total oil content. The experiment was conducted to find out the effect of sulphur on the seed yield and oil content of sesame in Bangladesh. The experiment comprised three varieties of sesame viz. Binatil-2, Binatil-3 and BARI Til-4 and six levels of sulphur (S) viz. 0, 10, 20, 30, 40 and 50 kg S ha–1. The experiment was laid out in a randomized complete block design with three replications. Dry matter production, crop characters, yield components, seed yield and oil content were significantly influenced by variety, level of sulphur and their interaction. The highest dry matter production plant–1 at 50 DAS (17.56 g), plant height (101.3 cm), number of branches plant–1 (3.66),  number of pods plant-1 (41.56), number of seeds pod-1 (58.83),  seed yield    (747.2 kg ha-1), stover yield (2243.0 kg ha–1) and oil content (40.03%) were obtained in BARI Til-4 while the corresponding lowest values of all parameters were recorded in Binatil-2. In case of sulphur application, the highest dry matter production plant–1 at 50 DAS (20.81 g), plant height (109.7 cm), number of branches plant–1 (3.87),  number of pods plant–1 (46.13),  number of seeds pod-1 (56.67),  seed yield (800.0 kg ha–1), stover yield (2787 kg ha–1 ) and oil content (43.97%) were obtained when crop was fertilized with 30 kg S ha–1 while the lowest seed yield (502.2 kg ha–1), stover yield (1550.0 kg ha–1) and oil content (32.80%) were obtained in control (0 kg S ha–1). BARI Til-4 fertilized with 30 kg S ha–1 produced the highest dry matter plant–1 at 50 DAS (24.80 g), number of pods plant–1 (51.13), seeds pod–1 (62.0) and seed yield (1011.0 kg ha–1). The highest oil content (43.97%) was also recorded in BARI Til-4 fertilized with 30 kg S ha–1, which was as good as that of BARI Til-4 fertilized with 40 kg S ha–1. Therefore, BARI Til-4 fertilized with 30 kg S ha–1 can be considered as a promising practice in respect of seed yield and oil content of sesame in Bangladesh. J. Bangladesh Agril. Univ. 17(1): 33–38, March 2019


2020 ◽  
Vol 21 (16) ◽  
pp. 5675
Author(s):  
Panagiotis Balaskas ◽  
Jonathan A. Green ◽  
Tariq M. Haqqi ◽  
Philip Dyer ◽  
Yalda A. Kharaz ◽  
...  

Ageing is a leading risk factor predisposing cartilage to osteoarthritis. However, little research has been conducted on the effect of ageing on the expression of small non-coding RNAs (sncRNAs). RNA from young and old chondrocytes from macroscopically normal equine metacarpophalangeal joints was extracted and subjected to small RNA sequencing (RNA-seq). Differential expression analysis was performed in R using package DESeq2. For transfer RNA (tRNA) fragment analysis, tRNA reads were aligned to horse tRNA sequences using Bowtie2 version 2.2.5. Selected microRNA (miRNAs or miRs) and small nucleolar RNA (snoRNA) findings were validated using real-time quantitative Polymerase Chain Reaction (qRT-PCR) in an extended cohort of equine chondrocytes. tRNA fragments were further investigated in low- and high-grade OA human cartilage tissue. In total, 83 sncRNAs were differentially expressed between young and old equine chondrocytes, including miRNAs, snoRNAs, small nuclear RNAs (snRNAs), and tRNAs. qRT-PCR analysis confirmed findings. tRNA fragment analysis revealed that tRNA halves (tiRNAs), tiRNA-5035-GluCTC and tiRNA-5031-GluCTC-1 were reduced in both high grade OA human cartilage and old equine chondrocytes. For the first time, we have measured the effect of ageing on the expression of sncRNAs in equine chondrocytes. Changes were detected in a number of different sncRNA species. This study supports a role for sncRNAs in ageing cartilage and their potential involvement in age-related cartilage diseases.


2017 ◽  
Vol 12 (1) ◽  
pp. 200-205 ◽  
Author(s):  
Bing Wang ◽  
Zhanjie Zuo ◽  
Fang Lv ◽  
Liang Zhao ◽  
Minjun Du ◽  
...  

AbstractAimsAccumulating evidence indicates that aberrant expression of miR-107 plays a crucial role in cancers. This study aims to display the function of miR-107 and its novel target genes in the progression of lung cancer.Methods and MaterialMiR-107 or miR-107 inhibitor was transfected into lung cancer cells A549. The levels of miR-107 and TP53 regulated inhibition of apoptosis 1 (TRIAP1) were examined by quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis and Western Blot. Functionally, MTT and colony formation assays were carried out to test the effect of miR-107 inhibitor and/or small interference RNA (siRNA) targeting TRIAP1 mRNA on proliferation of lung cancer cells. Levels of miR-107 or TRIAP1 were detected in clinical lung cancer samples by using qRT-PCR analysis.ResultsQRT-PCR analysis revealed that miR-107 inhibitor or miR-107 was successfully transfected into A549 cells. Western Blot indicated that miR-107 decreased the expression of TRIAP1 protein in the cells. In contrast, miR-107 inhibitor augmented the levels of TRIAP1 protein. Functionally, miR-107 inhibitor remarkably suppressed A549 cell proliferation, whereas, TRIAP1 siRNAs could abrogate the miR-107 inhibitor-induced proliferation of cells. Then, we validated that TRIAP1 was increased in clinical lung cancer samples. MiR-107 expression was negatively related to TRIAP1 expression in clinical lung cancer samples.ConclusionsMiR-107 suppresses cell proliferation by targeting TRIAP1 in lung cancer. Our finding allows new insights into the mechanisms of lung cancer that is mediated by miR-107.


2012 ◽  
Vol 49 (6) ◽  
pp. 1339-1346 ◽  
Author(s):  
Rebecca Browning ◽  
Steven Adamson ◽  
Shahid Karim

Sign in / Sign up

Export Citation Format

Share Document