oxidation status
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 28)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 181 ◽  
pp. 111692
Author(s):  
Jianxin Tang ◽  
Hao Ren ◽  
Xi Chen ◽  
Fengming Ma ◽  
Fengli Jiang ◽  
...  

2021 ◽  
Vol 72 (3) ◽  
pp. e426
Author(s):  
T. Liu ◽  
T.M. Olajide ◽  
W. Wang ◽  
Z. Cheng ◽  
Q. Cheng ◽  
...  

The nuclear magnetic resonance (NMR) technique was applied to monitor the quality of tea oil herein. The adulteration of virgin tea oil was monitored by 19F NMR and 1H NMR. The 19F NMR technique was used as a new method to detect the changes in quality and hydroperoxide value of tea oil. The research demonstrates that 19F NMR and 1H NMR can quickly detect adulteration in tea oil. High temperature caused a decrease in the ratio D and increase in the total diglyceride content. Some new peaks belonging to the derivatives of hydroperoxides appeared at δ-108.21 and δ-109.05 ppm on the 19F NMR spectrum when the oil was autoxidized and became larger when the hydroperoxide value increased. These results have great significance in monitoring the moisture content, freshness and oxidation status of oils and in detecting adulteration in high priced edible oils by mixing with cheap oils.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2559
Author(s):  
Elisa Varona ◽  
Alba Tres ◽  
Magdalena Rafecas ◽  
Stefania Vichi ◽  
Roser Sala ◽  
...  

Acid oils (AO) and fatty acid distillates (FAD) are byproducts from chemical and physical refining of edible oils and fats, respectively. Their high energy value makes their upcycling interesting as alternatives to conventional fats in animal feeding. The objective of this study is to characterize their oxidative quality and to provide recommendations about their evaluation for animal feeding purposes. The oxidation status (peroxide value (PV), p-Anisidine value (p-AnV), % polymeric compounds (POL)), the oxidative stability (induction time by the Rancimat at 120 °C (IT)), the fatty acid composition (FA), and tocopherol and tocotrienol content of 92 AO and FAD samples from the Spanish market were analyzed. Both AO and FAD showed low PV (0.8 and 1 meq O2/kg); however, p-AnV was higher in FAD (36.4 vs. 16.4 in AO) and POL was higher in AO (2.5% vs. not detected in FAD) as a consequence of the type of refining process. The botanical origin of AO and FAD influenced FA and tocol composition, and they influenced IT. A high variability was observed for most analyzed parameters, reinforcing the need for standardizing AO and FAD to obtain reliable feed ingredients and to include primary and secondary oxidative parameters within their quality control.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matteo Bonifazi ◽  
Jennifer Meessen ◽  
Alba Pérez ◽  
Francesco Vasques ◽  
Mattia Busana ◽  
...  

Inflammation and oxidative stress characterize sepsis and determine its severity. In this study, we investigated the relationship between albumin oxidation and sepsis severity in a selected cohort of patients from the Albumin Italian Outcome Study (ALBIOS). A retrospective analysis was conducted on the oxidation forms of human albumin [human mercapto-albumin (HMA), human non-mercapto-albumin form 1 (HNA1) and human non-mercapto-albumin form 2 (HNA2)] in 60 patients with severe sepsis or septic shock and 21 healthy controls. The sepsis patients were randomized (1:1) to treatment with 20% albumin and crystalloid solution or crystalloid solution alone. The albumin oxidation forms were measured at day 1 and day 7. To assess the albumin oxidation forms as a function of oxidative stress, the 60 sepsis patients, regardless of the treatment, were grouped based on baseline sequential organ failure assessment (SOFA) score as surrogate marker of oxidative stress. At day 1, septic patients had significantly lower levels of HMA and higher levels of HNA1 and HNA2 than healthy controls. HMA and HNA1 concentrations were similar in patients treated with albumin or crystalloids at day 1, while HNA2 concentration was significantly greater in albumin-treated patients (p < 0.001). On day 7, HMA was significantly higher in albumin-treated patients, while HNA2 significantly increased only in the crystalloids-treated group, reaching values comparable with the albumin group. When pooling the septic patients regardless of treatment, albumin oxidation was similar across all SOFA groups at day 1, but at day 7 HMA was lower at higher SOFA scores. Mortality rate was independently associated with albumin oxidation levels measured at day 7 (HMA log-rank = 0.027 and HNA2 log-rank = 0.002), irrespective of treatment group. In adjusted regression analyses for 90-day mortality, this effect remained significant for HMA and HNA2. Our data suggest that the oxidation status of albumin is modified according to the time of exposure to oxidative stress (differences between day 1 and day 7). After 7 days of treatment, lower SOFA scores correlate with higher albumin antioxidant capacity. The trend toward a positive effect of albumin treatment, while not statistically significant, warrants further investigation.


2021 ◽  
Vol 21 (10) ◽  
pp. 8323-8339
Author(s):  
Marta Via ◽  
María Cruz Minguillón ◽  
Cristina Reche ◽  
Xavier Querol ◽  
Andrés Alastuey

Abstract. The evolution of fine aerosol (PM1) species as well as the contribution of potential sources to the total organic aerosol (OA) at an urban background site in Barcelona, in the western Mediterranean basin (WMB) was investigated. For this purpose, a quadrupole aerosol chemical speciation monitor (Q-ACSM) was deployed to acquire real-time measurements for two 1-year periods: May 2014–May 2015 (period A) and September 2017–October 2018 (period B). Total PM1 concentrations showed a slight decrease (from 10.1 to 9.6 µg m−3 from A to B), although the relative contribution of inorganic and organic compounds varied significantly. Regarding inorganic compounds, SO42-, black carbon (BC) and NH4+ showed a significant decrease from period A to B (−21 %, −18 % and −9 %, respectively), whilst NO3- concentrations were higher in B (+8 %). Source apportionment revealed OA contained 46 % and 70 % secondary OA (SOA) in periods A and B, respectively. Two secondary oxygenated OA sources (OOA) were differentiated by their oxidation status (i.e. ageing): less oxidized (LO-OOA) and more oxidized (MO-OOA). Disregarding winter periods, when LO-OOA production was not favoured, LO-OOA transformation into MO-OOA was found to be more effective in period B. The lowest LO-OOA-to-MO-OOA ratio, excluding winter, was in September–October 2018 (0.65), implying an accumulation of aged OA after the high temperature and solar radiation conditions in the summer season. In addition to temperature, SOA (sum of OOA factors) was enhanced by exposure to NOx-polluted ambient and other pollutants, especially to O3 and during afternoon hours. The anthropogenic primary OA sources identified, cooking-related OA (COA), hydrocarbon-like OA (HOA), and biomass burning OA (BBOA), decreased from period A to B in both absolute concentrations and relative contribution (as a whole, 44 % and 30 %, respectively). However, their concentrations and proportion to OA grew rapidly during highly polluted episodes. The influence of certain atmospheric episodes on OA sources was also assessed. Both SOA factors were boosted with long- and medium-range circulations, especially those coming from inland Europe and the Mediterranean (triggering mainly MO-OOA) and summer breeze-driven regional circulation (mainly LO-OOA). In contrast, POA was enhanced either during air-renewal episodes or stagnation anticyclonic events.


2021 ◽  
Author(s):  
Alev Yüksel-Bilsel ◽  
Neşe Şahin-Yeşilçubuk

2021 ◽  
Vol 22 (6) ◽  
pp. 3258
Author(s):  
Kavitej Samra ◽  
Mathun Kuganesan ◽  
William Smith ◽  
Anna Kleyman ◽  
Robert Tidswell ◽  
...  

Metabolically active gasotransmitters (nitric oxide, carbon monoxide and hydrogen sulfide) are important signalling molecules that show therapeutic utility in oxidative pathologies. The reduced form of selenium, hydrogen selenide (HSe−/H2Se), shares some characteristics with these molecules. The simple selenide salt, sodium hydroselenide (NaHSe) showed significant metabolic activity, dose-dependently decreasing ex vivo O2 consumption (rat soleus muscle, liver) and transiently inhibiting mitochondrial cytochrome C oxidase (liver, heart). Pharmacological manipulation of selenoprotein expression in HepG2 human hepatocytes revealed that the oxidation status of selenium impacts on protein expression; reduced selenide (NaHSe) increased, whereas (oxidized) sodium selenite decreased the abundance of two ubiquitous selenoproteins. An inhibitor of endogenous sulfide production (DL-propargylglycine; PAG) also reduced selenoprotein expression; this was reversed by exogenous NaHSe, but not sodium hydrosulfide (NaHS). NaHSe also conferred cytoprotection against an oxidative challenge (H2O2), and this was associated with an increase in mitochondrial membrane potential. Anesthetized Wistar rats receiving intravenous NaHSe exhibited significant bradycardia, metabolic acidosis and hyperlactataemia. In summary, NaHSe modulates metabolism by inhibition of cytochrome C oxidase. Modification of selenoprotein expression revealed the importance of oxidation status of selenium therapies, with implications for current clinical practice. The utility of NaHSe as a research tool and putative therapeutic is discussed.


2021 ◽  
Author(s):  
Soumyabrata Banik ◽  
Aditi Sengupta ◽  
K.M. Sindhoora ◽  
Ishita Chakraborty ◽  
K. K. Mahato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document