scholarly journals Clay–Magnetite Co-Aggregates for Efficient Magnetic Removal of Organic and Inorganic Pollutants

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 927
Author(s):  
Eliana Pecini ◽  
Marcelo Avena

This work reports the behavior of montmorillonite–magnetite mixtures of varying composition in aqueous dispersions and evaluates their adsorbing properties using a cationic organic pollutant, methylene blue (MB+), and an anionic inorganic pollutant, arsenate (As(V)), as the adsorbing species. The effects of the presence of montmorillonite on the As(V) adsorption by magnetite and the effects of magnetite on the MB+ adsorption by the clay were specially addressed. The simple mixture of a montmorillonite dispersion with a magnetite dispersion led to the spontaneous formation of montmorillonite–magnetite co-aggregates. These co-aggregates showed a unimodal electrophoretic mobility distribution, with no evidence of the presence of separate populations of montmorillonite or magnetite. The application of a magnetic field confirmed the formation of co-aggregates and showed that their separation rate increased as the magnetite content increased. Adsorption studies as a function of the aggregate composition demonstrated that MB+ uptake was mainly controlled by the content of montmorillonite, while As(V) adsorption was mainly controlled by the content of Fe3O4. This permits an easy tuning of the adsorbing properties of cations and anions by controlling the composition of the system.

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1279
Author(s):  
Wafa Mohammed Alghamdi ◽  
Ines El Mannoubi

Natural adsorbents as low-cost materials have been proved efficient for water remediation and have significant capacity for the removal of certain chemicals from wastewater. The present investigation aimed to use Citrullus colocynthis seeds (CCSs) and peels (CCPs) as an efficient natural adsorbent for methylene blue (MB) dye in an aqueous solution. The examined biosorbents were characterized using surface area analyzer (BET), scanning electron microscope (SEM), thermogravimetric analyzer (TGA) and Fourier transform infra-red (FT-IR) spectroscopy. Batch adsorption experiments were conducted to optimize the main factors influencing the biosorption process. The equilibrium data for the adsorption of MB by CCSs were best described by the Langmuir isotherm followed by the Freundlich adsorption isotherms, while the equilibrium data for MB adsorption by CCPs were well fitted by the Langmuir isotherm followed by the Temkin isotherm. Under optimum conditions, the maximum biosorption capacity and removal efficiency were 18.832 mg g−1 and 98.00% for MB-CCSs and 4.480 mg g−1 and 91.43% for MB-CCPs. Kinetic studies revealed that MB adsorption onto CCSs obeys pseudo-first order kinetic model (K1 = 0.0274 min−1), while MB adsorption onto CCPs follows the pseudo-second order kinetic model (K2 = 0.0177 g mg−1 min−1). Thermodynamic studies revealed that the MB biosorption by CCSs was endothermic and a spontaneous process in nature associated with a rise in randomness, but the MB adsorption by CCPs was exothermic and a spontaneous process only at room temperature with a decline in disorder. Based on the obtained results, CCSs and CCPSs can be utilized as efficient, natural biosorbents, and CCSs is promising since it showed the highest removal percentage and adsorption capacity of MB dye.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4079
Author(s):  
Radhalayam Dhanalakshmi ◽  
Nambi Venkatesan Giridharan ◽  
Juliano C. Denardin

Magnetic-field-accelerated photocatalytic degradation of the phenol red (PR) as a model organic pollutant was studied using rare-earth elements modified BiFeO3 (Bi1−xRxFeO3 (R = Ce, Tb; x = 0.0, 0.05, 0.10 and 0.15); BFO: RE) nanostructures. The nanostructures were prepared via the hydrothermal process and their morphological, structural, functional, optical and magnetic features were investigated in detail. The effect of magnetic fields (MFs) on photocatalysis were examined by applying the different MFs under visible light irradiation. The enhanced photodegradation efficiencies were achieved by increasing the MF up to 0.5T and reduced at 0.7T for the compositions x = 0.10 in both Ce and Tb substituted BFO. Further, mineralization efficiencies of PR, reproducibility of MF-assisted photocatalysis, stability and recyclability of BFO: RE nanostructures were also tested.


2012 ◽  
Vol 550-553 ◽  
pp. 2259-2262
Author(s):  
Song Bo Cui ◽  
Hua Yong Zhang ◽  
Lu Yi Zhang

The adsorption behavior of methylene blue (MB) dye from aqueous solutions onto honeycomb-cinder (HC) and its acid-activated product was investigated in a batch system. The results showed the adsorption capacity was decreased for raw HC samples with the increase of pH value, while it was increased for activated samples. The adsorption data were fit with Langmuir isotherm model for MB adsorption by all samples. The MB adsorption capacity on samples was increased from 2.62 mg/g to 7.81 mg/g and 7.00 mg/g after acid-activated by HCl and H2SO4, respectively. The adsorption processes of MB followed pseudo-second-order kinetics with a coefficient of correlation≥0.99. This study demonstrated that acid-activated HC has superior adsorbing ability for MB than raw HC and can be used as alternative adsorbents in dye wastewater treatment.


Author(s):  
Nguyen The Manh ◽  
Duong Hong Quan ◽  
Vu Thi Ngoc Minh ◽  
Vuong Pham Hung

Micro/nano urchin-like VO2 particles were synthesized successfully by hydrothermal method. Vanadium pentoxide (V2O5), oxalic acid (C2H2O4) and sodium dodecyl sulfate (SDS) surfactant were used as reagents for the synthesis of VO2. In this article, we have reported the synthesis procedure of VO2 nanorods and micro/nano urchin-like VO2 structure and evaluating the methylene blue (MB) adsorption properties. Morphology and particle size of VO2 were observed by FE-SEM. The phase formation of VO2 was studied by XRD. Raman spectroscopy was also used for characterization of VO2. Micro/nano urchin-like VO2 structure was showed good MB adsorption properties that have potential applications in dye-contaminated water treatments.


2021 ◽  
Author(s):  
Nur Shazwani Abdul Mubarak ◽  
N.N. Bahrudin ◽  
Ali H. Jawad ◽  
B.H. Hameed ◽  
Sumiyyah Sabar

Abstract In this work, sulfonated chitosan montmorillonite composite (S-CS-MT) beads were synthesized using a microwave irradiation method designed to have a better saving-time procedure. The potency of S-CS-MT as an adsorbent was assessed for the removal of cationic dyes such as methylene blue (MB) from aqueous solution. The batch adsorption experiments indicated that MB adsorption onto S-CS-MT follows the Pseudo-second-order kinetic and Langmuir isotherm model. The maximum extent obtained from the Langmuir isotherm model for MB adsorption was 188.2 mg g− 1 at 303 K. The thermodynamic study indicated that the adsorption reaction is favorable and spontaneous. These findings indicated that montmorillonite chitosan grafted with the sulfonate group has the ability and efficacy as biohybrid adsorbent for the adsorption of cationic dyes.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6138
Author(s):  
Marwa El-Azazy ◽  
Ahmed S. El-Shafie ◽  
Bayan Al-Shaikh Al-Shaikh Yousef

Adsorptive removal of methylene blue (MB) from contaminated water samples was achieved using green tea waste (GTW). Adsorption of MB onto raw (RGTW) and thermally treated waste (TTGTW250–TTGTW500) was explored. The performance of the tested adsorbents was assessed in terms of percentage removal of MB (%R) and adsorption capacity (qe, mg/g). A full factorial design (FFD) was employed to optimize the adsorption of MB onto both RGTW and TTGTW500. Four factors were studied: pH, adsorbent dose (AD), dye concentration (DC), and contact time (CT). Value for %R of 96.58% and 98.07% were obtained using RGTW and TTGTW500, respectively. FT-IR and Raman analyses were used to study the surfaces of the prepared adsorbents, and the IR spectrum showed the existence of a variety of functionalities on the surfaces of both the RGTW and thermally treated samples. BET analysis showed the presence of mesopores and macropores in the case of RGTW and micropores in the case of thermally processed adsorbents. Equilibrium studies indicated that the Freundlich isotherm best described the adsorption of MB onto both adsorbents. The maximum adsorption capacity (qmax) was found to be 68.28 and 69.01 mg/g for RGTW and TTGTW500, respectively, implying the superior capacity of TTGTW500 in removing MB. Adsorption of MB was found to proceed via chemisorption (RGTW) and physisorption (TTGTW500), as indicated by the Dubinin–Radushkevich (D-R) isotherm. A pseudo-second order (PSO) model best demonstrated the kinetics of the MB adsorption onto both adsorbents.


2020 ◽  
Vol 9 (3) ◽  
pp. 9-14
Author(s):  
Hao Pham Van ◽  
Linh Ha Xuan ◽  
Oanh Phung Thi ◽  
Hong Phan Ngoc ◽  
Huy Nguyen Nhat ◽  
...  

This report presents the effect of synthesis conditions on the synthesis of graphene nanosheets via electrochemical exfoliation method for adsorbing methylene blue from aqueous solution. Oxygen-containing functional groups and defects in the material were characterized by Raman and X-ray photoelectron spectroscopy (XPS). As a result, by using voltage of 15 V, (NH4)2SO4 (5%, 250 mL) and KOH (7.5%, 250 mL), the obtained material showed the highest MB adsorption capacity due to the high densities of oxygen-containing groups and defects comparison to other conditions.


2020 ◽  
Vol 44 (6) ◽  
pp. 2291-2302 ◽  
Author(s):  
Mohamed Abboud ◽  
Taher Sahlabji ◽  
Mohammad Abu Haija ◽  
Adel A. El-Zahhar ◽  
Samir Bondock ◽  
...  

The synthesis, characterization, and methylene blue (MB) adsorption study of a new lignosulfonate/amino-functionalized SBA-15 nanocomposite are described.


RSC Advances ◽  
2020 ◽  
Vol 10 (23) ◽  
pp. 13722-13731 ◽  
Author(s):  
Satish Kasturi ◽  
Sri Ramulu Torati ◽  
Yun Ji Eom ◽  
Syafiq Ahmad ◽  
Byong-June Lee ◽  
...  

Herein, we have reported the real-time photodegradation of methylene blue, an organic pollutant, in the presence of sunlight at an ambient temperature using a platinum-decorated reduced graphene oxide (rGO/Pt) nanocomposite.


2018 ◽  
Vol 34 (4) ◽  
pp. 2043-2050 ◽  
Author(s):  
Buhani Buhani ◽  
Megafhit Puspitarini ◽  
Rahmawaty Rahmawaty ◽  
Suharso Suharso ◽  
Mita Rilyanti ◽  
...  

In this research, it has been performed carbon activation of oil palm shells (CAC) prepared by chemical treatment as adsorbents of phenol and methylene blue (MB) in solution either in the form of single or in pair solution. The activation of carbon from the oil palm shells was done physically at a temperature of 700°C for 1 hour continued with chemical activation using 10% H3PO4 for 24 hours. Identification of functional groups on the carbon from oil palm shell before and after chemically activated was performed using infrared spectrophotometer (IR) and analysis of its surface morphology was carried out using scanning electron microscope (SEM). The phenol and MB adsorption process was performed in single and binary systems using the batch method. The adsorption of phenol on CAC is optimum at pH 8 while MB at pH 11 with optimum contact time of 90 min for phenol and 120 min for MB respectively. The phenol and MB adsorption data on the CAC in the single system follow the pseudo-second-order kinetics model with the adsorption rate constant of 0.399 and 0.769 g mmol-1 min-1 respectively. The adsorption isotherms of phenol and MB in CAC tend to follow Freundlich adsorption isotherm pattern with the adsorption intensity factor (n) for phenol, MB, phenol/MB, and MB/phenol: 1.739, 1.341, 1.334, and 1.293 respectively. The adsorbent of CAC is effective to remove phenol and MB in solution, either in single or paired condition.


Sign in / Sign up

Export Citation Format

Share Document