scholarly journals Identification of Genetic Loci on Chromosome 4B for Improving the Grain Number per Spike in Pre-Breeding Lines of Wheat

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 171
Author(s):  
Jinpeng Zhang ◽  
Qifu Yao ◽  
Ruixin Li ◽  
Yuqing Lu ◽  
Shenghui Zhou ◽  
...  

The grain number per spike (GNPS) is an important yield component, and much attention is given to the increase in GNPS for current yield improvement of common wheat. Here, a panel of 259 pre-breeding lines and elite commercial varieties were collected for the investigation of 12 agronomic traits, especially for spike-related traits, with 2-year replicates. The high correlation between GNPS and kernel number per spikelet (KNS) suggested that the high GNPS trait in our pre-breeding lines was mainly controlled by grain set number per spikelet. Genome-wide association studies (GWAS) using the 660K SNP genotyping assay suggested that a major locus on chromosomes 4BS contributed to the high GNPS trait, which contributed to 33% and 48% of the variation in KNS and GNPS, respectively. A good diagnostic KASP marker AX-109286577 flanking the 4BS locus was developed for easy selection of the large spike trait. Taken together, the results suggested that untapped rare allele variation in our pre-breeding lines can be used for improvement of the yield component of set grain number per spike.

2010 ◽  
Vol 42 (11) ◽  
pp. 961-967 ◽  
Author(s):  
Xuehui Huang ◽  
Xinghua Wei ◽  
Tao Sang ◽  
Qiang Zhao ◽  
Qi Feng ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1152
Author(s):  
Mir Asif Iquebal ◽  
Pallavi Mishra ◽  
Ranjeet Maurya ◽  
Sarika Jaiswal ◽  
Anil Rai ◽  
...  

Karnal bunt (KB) of wheat (Triticum aestivum L.), known as partial bunt has its origin in Karnal, India and is caused by Tilletia indica (Ti). Its incidence had grown drastically since late 1960s from northwestern India to northern India in early 1970s. It is a seed, air and soil borne pathogen mainly affecting common wheat, durum wheat, triticale and other related species. The seeds become inedible, inviable and infertile with the precedence of trimethylamine secreted by teliospores in the infected seeds. Initially the causal pathogen was named Tilletia indica but was later renamed Neovossia indica. The black powdered smelly spores remain viable for years in soil, wheat straw and farmyard manure as primary sources of inoculum. The losses reported were as high as 40% in India and also the cumulative reduction of national farm income in USA was USD 5.3 billion due to KB. The present review utilizes information from literature of the past 100 years, since 1909, to provide a comprehensive and updated understanding of KB, its causal pathogen, biology, epidemiology, pathogenesis, etc. Next generation sequencing (NGS) is gaining popularity in revolutionizing KB genomics for understanding and improving agronomic traits like yield, disease tolerance and disease resistance. Genetic resistance is the best way to manage KB, which may be achieved through detection of genes/quantitative trait loci (QTLs). The genome-wide association studies can be applied to reveal the association mapping panel for understanding and obtaining the KB resistance locus on the wheat genome, which can be crossed with elite wheat cultivars globally for a diverse wheat breeding program. The review discusses the current NGS-based genomic studies, assembly, annotations, resistant QTLs, GWAS, technology landscape of diagnostics and management of KB. The compiled exhaustive information can be beneficial to the wheat breeders for better understanding of incidence of disease in endeavor of quality production of the crop.


2016 ◽  
Vol 61 (2) ◽  
pp. 113-125
Author(s):  
Gordana Brankovic ◽  
Dejan Dodig ◽  
Desimir Knezevic ◽  
Vesna Kandic ◽  
Jovan Pavlov

The research was aimed at examining variability, variance components, broadsense heritability (h2), expected genetic advance of thousand grain weight (TGW) and grain number per spike (GNS) of 15 genotypes of bread wheat and 15 genotypes of durum wheat. Field trials were carried out during 2010-2011 and 2011-2012 growing seasons at the three sites: Rimski Sancevi, Zemun Polje and Padinska Skela. Results of this investigation showed that the genetic component of variance (?2 g) was predominant for TGW of bread and durum wheat and for GNS of bread wheat. The genotype ? environment interaction (?2 ge) component of phenotypic variance was 8.72 times higher than ?2 g for GNS of durum wheat and pointed to the greater instability of durum wheat genotypes. h2 was very high (>90%) for TGW and GNS of bread wheat, high for TGW of durum wheat - 87.3% and low for GNS of durum wheat - 39.5%. Considering the high values obtained for h2 - 96.4% and the highest value for expected genetic advance as percent of mean (GAM) - 19.3% for TGW of bread wheat, the success of selection for desired values of this yield component can be anticipated. The success of selection cannot be predicted for GNS of durum wheat due to low values obtained for h2 and GAM of 39.5% and 2.8%, respectively.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yousef Rahimi ◽  
Mohammad Reza Bihamta ◽  
Alireza Taleei ◽  
Hadi Alipour ◽  
Pär K. Ingvarsson

Abstract Background Identification of loci for agronomic traits and characterization of their genetic architecture are crucial in marker-assisted selection (MAS). Genome-wide association studies (GWAS) have increasingly been used as potent tools in identifying marker-trait associations (MTAs). The introduction of new adaptive alleles in the diverse genetic backgrounds may help to improve grain yield of old or newly developed varieties of wheat to balance supply and demand throughout the world. Landraces collected from different climate zones can be an invaluable resource for such adaptive alleles. Results GWAS was performed using a collection of 298 Iranian bread wheat varieties and landraces to explore the genetic basis of agronomic traits during 2016–2018 cropping seasons under normal (well-watered) and stressed (rain-fed) conditions. A high-quality genotyping by sequencing (GBS) dataset was obtained using either all original single nucleotide polymorphism (SNP, 10938 SNPs) or with additional imputation (46,862 SNPs) based on W7984 reference genome. The results confirm that the B genome carries the highest number of significant marker pairs in both varieties (49,880, 27.37%) and landraces (55,086, 28.99%). The strongest linkage disequilibrium (LD) between pairs of markers was observed on chromosome 2D (0.296). LD decay was lower in the D genome, compared to the A and B genomes. Association mapping under two tested environments yielded a total of 313 and 394 significant (−log10P >3) MTAs for the original and imputed SNP data sets, respectively. Gene ontology results showed that 27 and 27.5% of MTAs of SNPs in the original set were located in protein-coding regions for well-watered and rain-fed conditions, respectively. While, for the imputed data set 22.6 and 16.6% of MTAs represented in protein-coding genes for the well-watered and rain-fed conditions, respectively. Conclusions Our finding suggests that Iranian bread wheat landraces harbor valuable alleles that are adaptive under drought stress conditions. MTAs located within coding genes can be utilized in genome-based breeding of new wheat varieties. Although imputation of missing data increased the number of MTAs, the fraction of these MTAs located in coding genes were decreased across the different sub-genomes.


Author(s):  
Priscilla Glenn ◽  
Junli Zhang ◽  
Gina Brown-Guedira ◽  
Noah DeWitt ◽  
Jason P. Cook ◽  
...  

Abstract Key message We discovered a natural FT-A2 allele that increases grain number per spike in both pasta and bread wheat with limited effect on heading time. Abstract Increases in wheat grain yield are necessary to meet future global food demands. A previous study showed that loss-of-function mutations in FLOWERING LOCUS T2 (FT2) increase spikelet number per spike (SNS), an important grain yield component. However, these mutations were also associated with reduced fertility, offsetting the beneficial effect of the increases in SNS on grain number. Here, we report a natural mutation resulting in an aspartic acid to alanine change at position 10 (D10A) associated with significant increases in SNS and no negative effects on fertility. Using a high-density genetic map, we delimited the SNS candidate region to a 5.2-Mb region on chromosome 3AS including 28 genes. Among them, only FT-A2 showed a non-synonymous polymorphism (D10A) present in two different populations segregating for the SNS QTL on chromosome arm 3AS. These results, together with the known effect of the ft-A2 mutations on SNS, suggest that variation in FT-A2 is the most likely cause of the observed differences in SNS. We validated the positive effects of the A10 allele on SNS, grain number, and grain yield per spike in near-isogenic tetraploid wheat lines and in an hexaploid winter wheat population. The A10 allele is present at very low frequency in durum wheat and at much higher frequency in hexaploid wheat, particularly in winter and fall-planted spring varieties. These results suggest that the FT-A2 A10 allele may be particularly useful for improving grain yield in durum wheat and fall-planted common wheat varieties.


Author(s):  
Ruicai Long ◽  
Fan Zhang ◽  
Zhiwu Zhang ◽  
Mingna Li ◽  
Lin Chen ◽  
...  

AbstractAlfalfa (Medicago sativaL.), the most valuable perennial legume crop, referred to as “Queen of the Forages” for its high nutritional value and yield production among forage crops. Comprehensive genomic information of germplasm resources from different ecological regions and modern breeding strategies, such as molecular-marker assisted breeding are of great importance to breed new alfalfa varieties with environmental resilience. Here, we report assembly of the genome sequence of Zhongmu-4 (ZM-4), one of the most planted cultivars in China, and identification of SNPs associated with alfalfa agronomic traits by Genome-wide Association Studies (GWAS). Sequence of 32 allelic chromosomes was assembled successfully by single molecule real time sequencing and Hi-C technique with ALLHiC algorithm. About 2.74 Gbp contigs, accounting for 88.39% of the estimated genome, were assembled with 2.56 Gbp contigs anchored to 32 pseudo-chromosomes. In comparison withM. truncatulaA17, distinctive inversion and translocation on chromosome 1, and between chromosome 4 and 8, respectively, were detected. Moreover, we conducted resequencing of 220 alfalfa accessions collected globally and performed GWAS analysis based on our assembled genome. Population structure analysis demonstrated that alfalfa has a complex genetic relationship among germplasm with different geographic origins. GWAS identified 101 SNPs associated with 27 out of 93 agronomic traits. The updated chromosome-scale and allele-aware genome sequence, coupled with the resequencing data of most global alfalfa germplasm, provides valuable information for alfalfa genetic research, and further analysis of major SNP loci will accelerate unravelling the molecular basis of important agronomic traits and facilitate genetic improvement of alfalfa.


Author(s):  
Marisol Domínguez ◽  
Elise Dugas ◽  
Médine Benchouaia ◽  
Basile Leduque ◽  
José Jimenez-Gomez ◽  
...  

ABSTRACTTomatoes come in a multitude of shapes and flavors despite a narrow genetic pool. Here, we leveraged whole-genome resequencing data available for 602 cultivated and wild accessions to determine the contribution of transposable elements (TEs) to tomato diversity. We identified 6,906 TE insertions polymorphisms (TIPs), which result from the mobilization of 337 distinct TE families. Most TIPs are low frequency variants and disproportionately located within or adjacent to genes involved in environmental response. In addition, we show that genic TE insertions tend to have strong transcriptional effects and can notably lead to the generation of multiple transcript isoforms. We also uncovered through genome-wide association studies (GWAS) ~180 TIPs associated with extreme variations in major agronomic traits or secondary metabolites. Importantly, these TIPs tend to affect loci that are distinct from those tagged by SNPs. Collectively, our findings suggest a unique and important role for TE mobilization in tomato diversification, with important implications for future breeding.


2020 ◽  
Author(s):  
Papias Hongera Binagwa ◽  
Sy M. Traore ◽  
Marceline Egnin ◽  
Gregory C. Bernard ◽  
Inocent Ritte ◽  
...  

Abstract Background: Genome-wide association studies (GWAS) was utilized to detect genetic variations related to the powdery mildew (PM) resistance and several agronomic traits in common bean. However, its application in common bean and the PM interactions to identify genes and their location in the common bean genome has not been fully addressed. Results: Genome-wide association studies (GWAS) through marker-trait association are useful molecular tools for the identification of disease resistance and other agronomic traits. SNP genotyping with a BeadChip containing 5398 SNPs was used to detect genetic variations related to resistance to PM disease in a panel of 206 genotypes grown under field conditions for two consecutive years. Significant SNPs identified on chromosomes 4 and 10 (Pv04 and Pv10) were repeatable, confirming the reliability of the phenotypic data scored from the genotypes grown in two locations within two years. A cluster of resistance genes was revealed on the chromosome 4 of common bean genome among which CNL and TNL like resistance genes were identified. Furthermore, two resistance genes Phavu_010G1320001g and Phavu_010G136800g were also identified on Pv10; further sequence analysis showed that these genes were homologs to the Arabidopsis disease resistance protein (RLM1A-like) and the putative disease resistance protein (At4g11170.1), respectively. Two LRR receptor-like kinases (RLK) were also identified on Pv11 in samples collected in 2018 only. Many genes encoding auxin-responsive protein, TIFY10A protein, growth-regulating factor 5-like, ubiquitin-like protein, cell wall protein RBR3-like protein related to PM resistance were identified nearby significant SNPs. These results suggested that the resistance to PM pathogen involves a network of many genes constitutively co-expressed and may generate several layers of defense barriers or inducible reactions.Conclusion: Our results provide new insights into common bean and PM interactions, and revealed putative resistance genes as well as their location on common bean genome that could be used for marker-assisted selection, functional genomic study approaches to confirm the role of these putative genes; hence, developing common bean resistance lines to the PM disease.


Author(s):  
Shynar Anuarbek ◽  
Saule Abugalieva ◽  
Yerlan Turuspekov

Abstract Development of efficient DNA markers plays an important role in modern breeding projects of many crops, including cultivated hexaploid bread wheat (BW) and tetraploid durum wheat (DW). Findings of genome-wide association studies on major polyploid crops, such as BW, may also help in molecular breeding studies in relative cultivated species with a similar genetic background, including DW. Therefore, the validation of identified quantitative trait loci or marker-trait associations is an important preliminary step in marker-assisted selection (MAS) oriented projects. In this study, thirty-two SNP (single nucleotide polymorphism) markers of six agronomic traits identified in BW, harvested in Kazakhstan, were converted to KASP (Kompetitive Allele-Specific PCR) as-says. Generated 32 KASP assays were used in the analysis of 29 DW accessions from Kazakhstan. Firstly, the group of DW accessions was tested using replicated and randomised one-metre blocks in field conditions of southeast Kazakhstan and evaluated for main agronomic traits. The analysis showed that 14 KASP assays were polymorphic in the scoring of 29 DW accessions. The t-test suggested that the segregation in eight KASP assays was significantly associated with five agronomic traits. The study confirms robustness of KASP assays in MAS of DW breeding projects for the improvement of yield potential.


2020 ◽  
Author(s):  
Shuai Liu ◽  
Hua Zhong ◽  
Xiaoxi Meng ◽  
Tong Sun ◽  
Yangsheng Li ◽  
...  

Abstract BackgroundRice is an important human staple food vulnerable to heavy metal contamination leading to serious concerns. High yield with low heavy metal contamination is a common but highly challenging goal for rice breeders worldwide due to lack of genetic knowledge and markers. ResultsTo identify candidate QTLs and develop molecular markers for rice yield and heavy metal content, a total of 191 accessions from the USDA Rice mini-core collection with over 3.2 million SNPs were employed to investigate the QTLs. Sixteen ionomic and thirteen agronomic traits were analyzed utilizing two univariate (GLM and MLM) and two multivariate (MLMM and FarmCPU) GWAS methods. 106, 47, and 97 QTLs were identified for ionomics flooded, ionomics unflooded, and agronomic traits, respectively, with the criterium of p-value <1.53×10-8, which was determined by the Bonferroni correction for p-value of 0.05. While 49 (~20%) of the 250 QTLs were coinciding with previous reported QTLs/genes, about 201 (~80%) were new. In addition, several new candidate genes involved in ionomic and agronomic traits control were identified by analyzing the DNA sequence, gene expression, and the homologs of the QTL regions. Our results further showed that each of the four GWAS methods can identify unique as well as common QTLs, suggesting that using multiple GWAS methods can complement each other in QTL identification, especially by combining univariate and multivariate methods. ConclusionsWhile 49 previously reported QTLs/genes were rediscovered, over 200 new QTLs for ionomic and agronomic traits were found in the rice genome. Moreover, multiple new candidate genes for agronomic and ionomic traits were identified. This research provides novel insights into the genetic basis of both ionomic and agronomic variations in rice, establishing the foundation for marker development in breeding and further investigation on reducing heavy-metal contamination and improving crop yields. Finally, the comparative analysis of the GWAS methods showed that each method has unique features and different methods can complement each other.


Sign in / Sign up

Export Citation Format

Share Document