scholarly journals The Cell Wall Proteome of Craterostigma plantagineum Cell Cultures Habituated to Dichlobenil and Isoxaben

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2295
Author(s):  
Gea Guerriero ◽  
Charles Achen ◽  
Xuan Xu ◽  
Sébastien Planchon ◽  
Céline C. Leclercq ◽  
...  

The remarkable desiccation tolerance of the vegetative tissues in the resurrection species Craterostigma plantagineum (Hochst.) is favored by its unique cell wall folding mechanism that allows the ordered and reversible shrinking of the cells without damaging neither the cell wall nor the underlying plasma membrane. The ability to withstand extreme drought is also maintained in abscisic acid pre-treated calli, which can be cultured both on solid and in liquid culture media. Cell wall research has greatly advanced, thanks to the use of inhibitors affecting the biosynthesis of e.g., cellulose, since they allowed the identification of the compensatory mechanisms underlying habituation. Considering the innate cell wall plasticity of C. plantagineum, the goal of this investigation was to understand whether habituation to the cellulose biosynthesis inhibitors dichlobenil and isoxaben entailed or not identical mechanisms as known for non-resurrection species and to decipher the cell wall proteome of habituated cells. The results showed that exposure of C. plantagineum calli/cells triggered abnormal phenotypes, as reported in non-resurrection species. Additionally, the data demonstrated that it was possible to habituate Craterostigma cells to dichlobenil and isoxaben and that gene expression and protein abundance did not follow the same trend. Shotgun and gel-based proteomics revealed a common set of proteins induced upon habituation, but also identified candidates solely induced by habituation to one of the two inhibitors. Finally, it is hypothesized that alterations in auxin levels are responsible for the increased abundance of cell wall-related proteins upon habituation.

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Veronica Giourieva ◽  
Emmanuel Panteris

Abstract Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2114
Author(s):  
Yusheng Liang ◽  
Nana Ma ◽  
Danielle N. Coleman ◽  
Fang Liu ◽  
Yu Li ◽  
...  

The objective was to perform a proof-of-principle study to evaluate the effects of methionine (Met) and arginine (Arg) supply on protein abundance of amino acid, insulin signaling, and glutathione metabolism-related proteins in subcutaneous adipose tissue (SAT) explants under ceramide (Ce) challenge. SAT from four lactating Holstein cows was incubated with one of the following media: ideal profile of amino acid as the control (IPAA; Lys:Met 2.9:1, Lys:Arg 2:1), increased Met (incMet; Lys:Met 2.5:1), increased Arg (incArg; Lys:Arg 1:1), or incMet plus incArg (Lys:Met 2.5:1 Lys:Arg 1:1) with or without 100 μM exogenous cell-permeable Ce (N-Acetyl-d-sphingosine). Ceramide stimulation downregulated the overall abundance of phosphorylated (p) protein kinase B (AKT), p-mechanistic target of rapamycin (mTOR), and p-eukaryotic elongation factor 2 (eEF2). Without Ce stimulation, increased Met, Arg, or Met + Arg resulted in lower p-mTOR. Compared with control SAT stimulated with Ce, increased Met, Arg, or Met + Arg resulted in greater activation of mTOR (p-mTOR/total mTOR) and AKT (p-AKT/total AKT), with a more pronounced response due to Arg. The greatest protein abundance of glutathione S-transferase Mu 1 (GSTM1) was detected in response to increased Met supply during Ce stimulation. Ceramide stimulation decreased the overall protein abundance of the Na-coupled neutral amino acid transporter SLC38A1 and branched-chain alpha-ketoacid dehydrogenase kinase (BCKDK). However, compared with controls, increased Met or Arg supply attenuated the downregulation of BCKDK induced by Ce. Circulating ceramides might affect amino acid, insulin signaling, and glutathione metabolism in dairy cow adipose tissue. Further in vivo studies are needed to confirm the role of rumen-protected amino acids in regulating bovine adipose function.


Planta ◽  
2021 ◽  
Vol 253 (5) ◽  
Author(s):  
Peilei Chen ◽  
Valentino Giarola ◽  
Dorothea Bartels

Abstract Main conclusion The cell wall protein CpWAK1 interacts with pectin, participates in decoding cell wall signals, and induces different downstream responses. Abstract Cell wall-associated protein kinases (WAKs) are transmembrane receptor kinases. In the desiccation-tolerant resurrection plant Craterostigma plantagineum, CpWAK1 has been shown to be involved in stress responses and cell expansion by forming a complex with the C. plantagineum glycine-rich protein1 (CpGRP1). This prompted us to extend the studies of WAK genes in C. plantagineum. The phylogenetic analyses of WAKs from C. plantagineum and from other species suggest that these genes have been duplicated after species divergence. Expression profiles indicate that CpWAKs are involved in various biological processes, including dehydration-induced responses and SA- and JA-related reactions to pathogens and wounding. CpWAK1 shows a high affinity for “egg-box” pectin structures. ELISA assays revealed that the binding of CpWAKs to pectins is modulated by CpGRP1 and it depends on the apoplastic pH. The formation of CpWAK multimers is the prerequisite for the CpWAK–pectin binding. Different pectin extracts lead to opposite trends of CpWAK–pectin binding in the presence of Ca2+ at pH 8. These observations demonstrate that CpWAKs can potentially discriminate and integrate cell wall signals generated by diverse stimuli, in concert with other elements, such as CpGRP1, pHapo, Ca2+[apo], and via the formation of CpWAK multimers.


2005 ◽  
Vol 187 (8) ◽  
pp. 2582-2591 ◽  
Author(s):  
Yasuo Mitani ◽  
XianYing Meng ◽  
Yoichi Kamagata ◽  
Tomohiro Tamura

ABSTRACT The nocardioform actinomycete Rhodococcus erythropolis has a characteristic cell wall structure. The cell wall is composed of arabinogalactan and mycolic acid and is highly resistant to the cell wall-lytic activity of lysozyme (muramidase). In order to improve the isolation of recombinant proteins from R. erythropolis host cells (N. Nakashima and T. Tamura, Biotechnol. Bioeng. 86:136-148, 2004), we isolated two mutants, L-65 and L-88, which are susceptible to lysozyme treatment. The lysozyme sensitivity of the mutants was complemented by expression of Corynebacterium glutamicum ltsA, which codes for an enzyme with glutamine amidotransferase activity that results from coupling of two reactions (a glutaminase activity and a synthetase activity). The lysozyme sensitivity of the mutants was also complemented by ltsA homologues from Bacillus subtilis and Mycobacterium tuberculosis, but the homologues from Streptomyces coelicolor and Escherichia coli did not complement the sensitivity. This result suggests that only certain LtsA homologues can confer lysozyme resistance. Wild-type recombinant LtsA from R. erythropolis showed glutaminase activity, but the LtsA enzymes from the L-88 and L-65 mutants displayed drastically reduced activity. Interestingly, an ltsA disruptant mutant, which expressed the mutated LtsA, changed from lysozyme sensitive to lysozyme resistant when NH4Cl was added into the culture media. The glutaminase activity of the LtsA mutants inactivated by site-directed mutagenesis was also restored by addition of NH4Cl, indicating that NH3 can be used as an amide donor molecule. Taken together, these results suggest that LtsA is critically involved in mediating lysozyme resistance in R. erythropolis cells.


2013 ◽  
Vol 13 (1) ◽  
pp. 24 ◽  
Author(s):  
Bertrand Delaunois ◽  
Thomas Colby ◽  
Nicolas Belloy ◽  
Alexandra Conreux ◽  
Anne Harzen ◽  
...  

Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Ping-Hung Lin ◽  
Lu-Ting Kuo ◽  
Hui-Tzung Luh

Neurotrophins are a collection of structurally and functionally related proteins. They play important roles in many aspects of neural development, survival, and plasticity. Traumatic brain injury (TBI) leads to different levels of central nervous tissue destruction and cellular repair through various compensatory mechanisms promoted by the injured brain. Many studies have shown that neurotrophins are key modulators of neuroinflammation, apoptosis, blood–brain barrier permeability, memory capacity, and neurite regeneration. The expression of neurotrophins following TBI is affected by the severity of injury, genetic polymorphism, and different post-traumatic time points. Emerging research is focused on the potential therapeutic applications of neurotrophins in managing TBI. We conducted a comprehensive review by organizing the studies that demonstrate the role of neurotrophins in the management of TBI.


2019 ◽  
Vol 209 ◽  
pp. 103506 ◽  
Author(s):  
Lu Xiao ◽  
Taotao Li ◽  
Guoxiang Jiang ◽  
Yueming Jiang ◽  
Xuewu Duan

2020 ◽  
Vol 29 ◽  
pp. 096368972095233
Author(s):  
Heide Brandhorst ◽  
Daniel Brandhorst ◽  
Anju Abraham ◽  
Samuel Acreman ◽  
Simen W. Schive ◽  
...  

Previous studies in rodents have indicated that function and survival of transplanted islets can be substantially improved by mesenchymal stem cells (MSC). The few human islet studies to date have confirmed these findings but have not determined whether physical contact between MSC and islets is required or whether the benefit to islets results from MSC-secreted proteins. This study aimed to investigate the protective capacity of MSC-preconditioned media for human islets. MSC were cultured for 2 or 5 days in normoxia or hypoxia before harvesting the cell-depleted media for human islet culture in normoxia or hypoxia for 6–8 or 3–4 days, respectively. To characterize MSC-preconditioned media, proteomic secretome profiling was performed to identify angiogenesis- and inflammation-related proteins. A protective effect of MSC-preconditioned media on survival and in vitro function of hypoxic human islets was observed irrespective of the atmosphere used for MSC preconditioning. Islet morphology changed markedly when media from hypoxic MSC were used for culture. However, PDX-1 and insulin gene expression did not confirm a change in the genetic phenotype of these islets. Proteomic profiling of preconditioned media revealed the heterogenicity of the secretome comprising angiogenic and antiapoptotic as well as angiostatic or proinflammatory mediators released at an identical pattern regardless whether MSC had been cultured in normoxic or hypoxic atmosphere. These findings do not allow a clear discrimination between normoxia and hypoxia as stimulus for protective MSC capabilities but indicate an ambivalent character of the MSC angiogenesis- and inflammation-related secretome. Nevertheless, culture of human islets in acellular MSC-preconditioned media resulted in improved morphological and functional islet integrity suggesting a disbalance in favor of protective factors. Further approaches should aim to eliminate potentially detrimental factors to enable the production of advanced clinical grade islet culture media with higher protective qualities.


Sign in / Sign up

Export Citation Format

Share Document