Meltdown

Author(s):  
Jorge Daniel Taillant

Climate change is happening all around us, and one of the telltale signs is melting glaciers. We hear about it almost daily, pieces of ice the size of continents breaking off of Antarctica or the polar arctic ice breaking up and disappearing more and more quickly opening up navigational routes once unavailable due to thick winter ice cover. Will melting ice and glaciers so far away change our lives? Meltdown takes us deep into the cryosphere, the Earth’s frozen environment and picks apart why glacier melt caused by climate change will alter (and already is altering) the way we live around the world. From rising seas that will destroy property and flood millions of acres of coastal lands, displacing hundreds of millions of people, to rising global temperatures due to reflectivity changes of the Earth because of decreased white glacier surface area, to colossal water supply changes from glacier runoff reduction, to deadly glacier tsunamis caused by the structural weakening of ice on high mountaintops that will take out entire communities living in glacier runoff basins, to escaping methane gas from thawing frozen permafrost grounds, and changing ocean temperatures that affect jet streams and ocean water currents around the planet, glacier melt is altering our global ecosystems in ways that will drastically change our everyday lives. Meltdown takes us into the little-known periglacial environment, a world of invisible subterranean glaciers in our coldest mountain ranges that will survive the initial impacts of climate change but that are also ultimately at risk due to a warming climate. By examining the dynamics of melting glaciers, Meltdown helps us grasp the impacts of a massive geological era shift occurring right before our eyes.

2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


Author(s):  
Kimberley R. Miner ◽  
Paul Andrew Mayewski ◽  
Mary Hubbard ◽  
Kenny Broad ◽  
Heather Clifford ◽  
...  

In 2019, the National Geographic and Rolex Perpetual Planet Everest expedition successfully retrieved the greatest diversity of scientific data ever from the mountain. The confluence of geologic, hydrologic, chemical and microbial hazards emergent as climate change increases glacier melt is significant. We review the findings of increased opportunity for landslides, water pollution, human waste contamination and earthquake events. Further monitoring and policy are needed to ensure the safety of residents, future climbers, and trekkers in the Mt. Everest watershed.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1237 ◽  
Author(s):  
Caihong Hu ◽  
Li Zhang ◽  
Qiang Wu ◽  
Shan-e-hyder Soomro ◽  
Shengqi Jian

Runoff reduction in most river basins in China has become a hotpot in recent years. The Gushanchuan river, a primary tributary of the middle Yellow river, Northern China, showed a significant downward trend in the last century. Little is known regarding the relative contributions of changing environment to the observed hydrological trends and response on the runoff generation process in its watershed. On the basis of observed hydrological and meteorological data from 1965–2010, the Mann-Kendall trend test and climate elasticity method were used to distinguish the effects of climate change and human activities on runoff in the Gushanchuan basin. The results indicate that the runoff in the Gushanchuan Basin has experienced significant declines as large as 77% from 1965 to 2010, and a mutation point occurred around 1997; the contribution rate of climate change to runoff change is 12.9–15.1%, and the contribution rate of human activities to runoff change is 84.9–87.1%. Then we divided long-term data sequence into two stages around the mutation point, and analyzed runoff generation mechanisms based on land use and cover changes (LUCC). We found that the floods in the Gushanchuan Basin were still dominated by Excess-infiltration runoff, but the proportion in 1965–1997 and 1998–2010 decreased gradually (68.46% and 45.83% in turn). The proportion of Excess-storage runoff and Mixed runoff has increased, which means that the runoff is made up of more runoff components. The variation law of the LUCC indicates that the forest area increased by 49.61%, the confluence time increased by 50.42%, and the water storage capacity of the watershed increased by 30.35%.


Geography ◽  
2014 ◽  
Vol 99 (3) ◽  
pp. 143-152 ◽  
Author(s):  
Alton C. Byers ◽  
Daene C. McKinney ◽  
Shailendra Thakali ◽  
Marcelo Somos-Valenzuela

2021 ◽  
Author(s):  
Selina Meier ◽  
Randy Munoz ◽  
Christian Huggel

<p>Water scarcity is increasingly becoming a problem in many regions of the world. On the one hand, this can be attributed to changes in precipitation conditions due to climate change. On the other hand, this is also due to population growth and changes in consumer behaviour. In this study, an analysis is carried out for the highly glaciated Vilcanota River catchment (9808 km<sup>2</sup> – 1.2% glacier area) in the Cusco region (Peru). Possible climatic and socioeconomic scenarios up to 2050 were developed including the interests from different water sectors, i.e. agriculture, domestic and energy.</p><p>The analysis consists of the hydrological simulation at a monthly time step from September 2043 to August 2050 using a simple glacio-hydrological model. For historic conditions (1990 to 2006) a combination of gridded data (PISCO precipitation) and weather stations was used. Future scenario simulations were based on three different climate models for both RCP 2.6 and 8.5. Different glacier outlines were used to simulate changes in glacier surface through the time for both historic (from satellite data) and future (from existing literature) scenarios. Furthermore, future water demand simulations were based on the SSP1 and SSP3 scenarios.</p><p>Results from all scenarios suggest an average monthly runoff of about 130 m<sup>3</sup>/s for the Vilcanota catchment between 2043 and 2050. This represents a change of about +5% compared to the historical monthly runoff of about 123 m<sup>3</sup>/s. The reason for the increase in runoff is related to the precipitation data from the selected climate models. However, an average monthly deficit of up to 50 m<sup>3</sup>/s was estimated between April and November with a peak in September. The seasonal deficit is related to the seasonal change in precipitation, while the water demand seems to have a less important influence.</p><p>Due to the great uncertainty of the modelling and changes in the socioeconomic situation, the data should be continuously updated. In order to construct a locally sustainable water management system, the modelling needs to be further downscaled to the different subcatchments in the Vilcanota catchment. To address the projected water deficit, a new dam could partially compensate for the decreasing storage capacity of the melting glaciers. However, the construction of the dam could meet resistance from the local population if they cannot be promised and communicated multiple uses of the new dam. Sustainable water management requires the cooperation of all stakeholders and all stakeholders should be able to benefit from it so that they will support future projects.</p>


Science ◽  
2021 ◽  
pp. eabf3668
Author(s):  
Mohd. Farooq Azam ◽  
Jeffrey S. Kargel ◽  
Joseph M. Shea ◽  
Santosh Nepal ◽  
Umesh K. Haritashya ◽  
...  

Understanding the response of Himalayan-Karakoram (HK) rivers to climate change is crucial for ~1 billion people who partly depend on these water resources. Policymakers tasked with the sustainable water resources management for agriculture, hydropower, drinking, sanitation, and hazards require an assessment of rivers’ current status and potential future changes. This review demonstrates that glacier and snow melt are important components of HK rivers, with greater hydrological importance for the Indus than Ganges and Brahmaputra basins. Total river runoff, glacier melt, and seasonality of flow are projected to increase until the 2050s, with some exceptions and large uncertainties. Critical knowledge gaps severely affect modeled contributions of different runoff components, future runoff volumes and seasonality. Therefore, comprehensive field- and remote sensing-based methods and models are needed.


2018 ◽  
Vol 26 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Conor D. Mallory ◽  
Mark S. Boyce

The ability of many species to adapt to the shifting environmental conditions associated with climate change will be a key determinant of their persistence in the coming decades. This is a challenge already faced by species in the Arctic, where rapid environmental change is well underway. Caribou and reindeer (Rangifer tarandus) play a key role in Arctic ecosystems and provide irreplaceable socioeconomic value to many northern peoples. Recent decades have seen declines in many Rangifer populations, and there is strong concern that climate change is threatening the viability of this iconic Arctic species. We examine the literature to provide a thorough and full consideration of the many environmental factors that limit caribou and reindeer populations, and how these might be affected by a warming climate. Our review suggests that the response of Rangifer populations to climate change is, and will continue to be, varied in large part to their broad circumpolar distribution. While caribou and reindeer could have some resilience to climate change, current global trends in abundance undermine all but the most precautionary outlooks. Ultimately, the conservation of Rangifer populations will require careful management that considers the local and regional manifestations of climate change.


2020 ◽  
Vol 96 ◽  
pp. 66-87
Author(s):  
Jennifer R. Marlon

AbstractWildfires are an integral part of most terrestrial ecosystems. Paleofire records composed of charcoal, soot, and other combustion products deposited in lake and marine sediments, soils, and ice provide a record of the varying importance of fire over time on every continent. This study reviews paleofire research to identify lessons about the nature of fire on Earth and how its past variability is relevant to modern environmental challenges. Four lessons are identified. First, fire is highly sensitive to climate change, and specifically to temperature changes. As long as there is abundant, dry fuel, we can expect that in a warming climate, fires will continue to grow unusually large, severe, and uncontrollable in fire-prone environments. Second, a better understanding of “slow” (interannual to multidecadal) socioecological processes is essential for predicting future wildfire and carbon emissions. Third, current patterns of burning, which are very low in some areas and very high in others—are often unprecedented in the context of the Holocene. Taken together, these insights point to a fourth lesson—that current changes in wildfire dynamics provide an opportunity for paleoecologists to engage the public and help them understand the potential consequences of anthropogenic climate change.


Author(s):  
Maria José Centenero de Arce ◽  
Gracia Martínez Orenes ◽  
Antonio Luis Guinea Serrano

La educación ambiental es un reto y una realidad que debemos incluir en los centros educativos de todo el mundo.  A partir de los Objetivos de Desarrollo Sostenible 2030 (ODS) lanzado por Naciones Unidas, nos planteamos la necesidad de actuar contra el calentamiento global, el cambio climático y en general cambiar para mejorar nuestros hábitos, tanto sociales, como personales. Vimos que este cambio tan necesario y urgente en nuestro modo de vida lo podríamos acercar a los más jóvenes a través del juego. Para ello se buscó una metodología práctica para trabajar a través del juego y de la tecnología los conceptos necesarios para el cuidado del medio ambiente. Con esta gamificación buscamos motivar al alumnado para iniciar este cambio de estilo de vida de una forma divertida y en equipo sin olvidar el objetivo de alcanzar la mayoría de las metas propuestas. La utilización del juego como instrumento de aprendizaje favorece la participación e implicación del alumnado y ayuda a la cohesión de los equipos. Retos de lógica, artísticos, de cuidado de medio ambiente, talleres de igualdad han convivido con las materias habituales durante este curso. La completa participación de profesorado y alumnado ha hecho que este reto educativo se haya convertido en una realidad extrapolable a otros cursos e incluso a otros centros que deseen incorporarlo. Environmental education is a challenge and a reality that we must include in educational centers around the world. Based on the 2030 Sustainable Development Goals (SDG) launched by the United Nations, we consider the need to act against global warming, climate change and in general change to improve our habits, both social and personal. We saw that this so necessary and urgent change in our way of life could be brought closer to the youngest through the game. For this, a practical methodology was sought to work through games and technology the concepts necessary for caring for the environment. With this gamification we seek to motivate students to start this lifestyle chango in a fun way and as a team without forgetting the objective of achieving most of the proposed goals. The use of the game as a learning instrument favors the participation and involvement of the students and helps the cohesion of the teams. Challenges of logic, art, care of the environment, equality workshops have coexisted with the usual subjects during this course. The full participation of teachers and students has made this educational challenge a reality that can be extrapolated to other courses and even to other centers that wish to incorporate it.


Sign in / Sign up

Export Citation Format

Share Document