scholarly journals G-Force Test Stand for the Evaluation of Weapon Component Strength

Author(s):  
Damian GOŁOŚ ◽  
Michał JASIŃSKI ◽  
Paweł ZAWADA ◽  
Janusz NOGA

This paper discusses the design of a G-force test stand intended to examine of the effects of mechanical loads present during firing of a weapon and applied to the electronic components contained in the 155 mm calibre guided projectile. The G-force test stand is used to develop and test the effects of using high mechanical loads by decelerating a test specimen through the use of a purpose-designed fender assembly. For the purpose of testing, it is irrelevant whether a load is developed by acceleration or deceleration of the test specimen, as a test result obtained by the deceleration of a test specimen is equivalent to a test result obtained by the acceleration of a test specimen, as used in a 155 mm calibre artillery guided projectile. The G-force test stand was used to test and determine the velocities developed by the test specimens and the G-forces applied to them. The maximum velocity to which a test specimen was accelerated was approx. 72 m/s. The test stand was able to propel the test specimens to velocities an order of magnitude higher than the velocities obtained with a Kast and Masset ram. The tests were performed with rubber and copper fender assemblies. The effect of the specific fender used was demonstrated on the trend of the generated G-force. The test stand could develop G-forces in excess of 10,000 with a duration of more than 500 µs.

CYCLOTRON ◽  
2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Migdes C Kause

Abstrak— Telah dilakukan rancang bangun alat peraga fisika pada kasus gerak jatuh bebas berbasis Arduino. Alat peraga yang telah dikembangkan bertujuan untuk memvisualisasikan fenomena gerak jatuh bebas dan mengukur percepatan gravitasi bumi dan membuktikan konsep-onsep gerak jatuh bebas. Rancang bangun alat peraga menggunakan komponen elektronik seperti Arduino, sensor inframerah, sensor ultrasonik, push button, LCD, relay, dan LED sebagai komponen utama perangkat keras (hardware). Perangkat lunak (software) yang digunakan dalam mengembangkan alat peraga ini memanfaatkan compiler IDE Arduino berbasis bahasa C#. Besaran fisis yang diukur menggunakan alat peraga yang dikembangkan dalam penelitian ini adalah ketinggian benda dan waktu tempuh benda. Hasil pengujian kinerja alat peraga yang dikembangkan menunjukkan bahwa alat peraga mampu memvisualisasikan fenomena gerak jatuh bebas, mengukur percepatan gravitasi bumi dengan nilai rata-rata sebesar 10,2 m/s2, dan membuktikan konsep-konsep dalam gerak jatuh bebas. Kata kunci: Alat Peraga, Arduino, Gerak Jatuh Bebas Abstract— There is an effort to design learning media for teaching physics on free fall based on Arduino. The learning media designed is aimed at visualizing free fall phenomena, measuring earth gravitation speed, and proofing the concepts of free fall. Designing learning media using electronic components such as Arduino, infrared sensor, ultrasonic sensor, pushbutton, LCD, relay, and LED as the main components hardware devices.  Software devices which are used to improve this learning media were IDE Arduino Compiler C# language base. Physics quantity which is measured using the designed learning media in this study were the object’s height and the needed time. The test result of the designed learning media this study showed that this learning media could visualize free fall phenomena, measure the earth gravitation speed with the average score was  10,2 m/s2 , and proofing free fall concepts. Keywords: Learning Media, Arduino, Free Fall


2012 ◽  
Vol 80 (1) ◽  
Author(s):  
Patricio F. Mendez ◽  
Thomas W. Eagar

This work introduces the “order of magnitude scaling” (OMS) technique, which permits for the first time a simple computer implementation of the scaling (or “ordering”) procedure extensively used in engineering. The methodology presented aims at overcoming the limitations of the current scaling approach, in which dominant terms are manually selected and tested for consistency. The manual approach cannot explore all combinations of potential dominant terms in problems represented by many coupled differential equations, thus requiring much judgment and experience and occasionally being unreliable. The research presented here introduces a linear algebra approach that enables unassisted exhaustive searches for scaling laws and checks for their self-consistency. The approach introduced is valid even if the governing equations are nonlinear, and is applicable to continuum mechanics problems in areas such as transport phenomena, dynamics, and solid mechanics. The outcome of OMS is a set of power laws that estimates the characteristic values of the unknowns in a problem (e.g., maximum velocity or maximum temperature variation). The significance of this contribution is that it extends the range of applicability of scaling techniques to large systems of coupled equations and brings objectivity to the selection of small terms, leading to simplifications. The methodology proposed is demonstrated using a linear oscillator and thermocapillary flows in welding.


2016 ◽  
Vol 2 (4) ◽  
pp. e1501856 ◽  
Author(s):  
Tomoyuki Yokota ◽  
Peter Zalar ◽  
Martin Kaltenbrunner ◽  
Hiroaki Jinno ◽  
Naoji Matsuhisa ◽  
...  

Thin-film electronics intimately laminated onto the skin imperceptibly equip the human body with electronic components for health-monitoring and information technologies. When electronic devices are worn, the mechanical flexibility and/or stretchability of thin-film devices helps to minimize the stress and discomfort associated with wear because of their conformability and softness. For industrial applications, it is important to fabricate wearable devices using processing methods that maximize throughput and minimize cost. We demonstrate ultraflexible and conformable three-color, highly efficient polymer light-emitting diodes (PLEDs) and organic photodetectors (OPDs) to realize optoelectronic skins (oe-skins) that introduce multiple electronic functionalities such as sensing and displays on the surface of human skin. The total thickness of the devices, including the substrate and encapsulation layer, is only 3 μm, which is one order of magnitude thinner than the epidermal layer of human skin. By integrating green and red PLEDs with OPDs, we fabricate an ultraflexible reflective pulse oximeter. The device unobtrusively measures the oxygen concentration of blood when laminated on a finger. On-skin seven-segment digital displays and color indicators can visualize data directly on the body.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Débora de Paula Michelatto ◽  
Leif Karlsson ◽  
Ana Letícia Gori Lusa ◽  
Camila D’Almeida Mgnani Silva ◽  
Linus Joakim Östberg ◽  
...  

We present the functional and structural effects of seven novel (p.Leu12Met, p.Arg16Cys, p.Ser101Asn, p.Ser202Gly, p.Pro267Leu, p.Gln389_Ala391del, and p.Thr450Met) and two previously reported but not studied (p.Ser113Phe and p.Thr450Pro)CYP21A2mutations. Functional analyses were complemented within silicoprediction of mutation pathogenicity based on the recently crystallized human CYP21A2 structure. Mutated proteins were transiently expressed in COS-1 cells and enzyme activities towards 17-hydroxyprogesterone and progesterone were determined. Residual enzyme activities between 43% and 97% were obtained for p.Arg16Cys, p.Ser101Asn, p.Ser202Gly, p.Pro267Leu, and p.Thr450Met, similar to the activities of the well-known nonclassic mutations p.Pro453Ser and p.Pro482Ser, whereas the p.Leu12Met variant showed an activity of 100%. Conversely, the novel p.Ser113Phe, p.Gln389_Ala391del, and p.Thr450Pro mutations drastically reduced the enzyme function below 4%. TheKmvalues for all novel variants were in the same order of magnitude as for the wild-type protein except for p.The450Met. The maximum velocity was decreased for all mutants except for p.Leu12Met. We conclude that p.Leu12Met is a normal variant; the mutations p.Arg16Cys, p.Ser101Asn, p.Ser202Gly, p.Pro267Leu, and p.Thr450Met could be associated with very mild nonclassic CAH, and the mutations p.Ser113Phe, p.Gln389_Ala391del, and p.Thr450Pro are associated with classic CAH. The obtained residual activities indicated a good genotype-phenotype correlation.


2020 ◽  
Author(s):  
Chenghao Chen ◽  
Shiang Mei ◽  
Shengshui Chen

<p><strong>Abstract:</strong>  Seepage process can be extensively observed in rainfall infiltration, natural waterways, artificial hydraulic constructions and other interactive phenomena between water and soil. Recent investigations targeting the deep water circulation as well as shifts of basin patterns induced by massive projects urge the need to enhance the understanding of seepage characteristics under profound depth (high packing state) and great hydraulic pressure. Alluvial gravelly soil is an ordinary weathering product in mountainous area, either exposed to the ground or embedded as a layer. This research focuses on the hydraulic conductivity of such soil. A novel large-scale triaxial seepage apparatus was designed with the capability of replicating densely packed soil specimen and simulating severe hydraulic conditions. Influences of both the packing state and the hydraulic pressures were experimentally studied. It is revealed while most existing permeability models present the rational description that hydraulic conductivity decreases with higher packing state, these formulas for non-plastic soil overestimate the hydraulic conductivity of gravelly soil more than one order of magnitude. The dependence of hydraulic pressure displays the similar trend, as increasing hydraulic gradient diminishes the hydraulic conductivity. Coupled hydro-mechanical permeability models are therefore introduced based on test results. No observation of obvious seepage failure illustrates that high packing state resulting from mechanical loads are favorable to prevention of soil erosion and corresponding countermeasures.</p>


1982 ◽  
Vol 202 (3) ◽  
pp. 717-721 ◽  
Author(s):  
M L Halperin ◽  
S Cheema-Dhadli

The purpose of these studies was to define the properties of the systems that transport hexoses into adipocytes. Glucose appears to enter adipocytes on a single transport system whose maximum velocity is stimulated by insulin and which is competitively inhibited by cytochalasin B, 5-thioglucose, fructose, mannose and 3-O-methylglucose. In contrast, fructose enters adipocytes by at least two separate mechanisms, one an insulin-sensitive transporter (probably the glucose transporter) and the other a mechanism that is insensitive to insulin. The fructose concentration required for half-maximal rates of transport is at least an order of magnitude higher than that for glucose and the maximum velocity of fructose transport is more than double that for glucose.


Author(s):  
W. J. Abramson ◽  
H. W. Estry ◽  
L. F. Allard

LaB6 emitters are becoming increasingly popular as direct replacements for tungsten filaments in the electron guns of modern electron-beam instruments. These emitters offer order of magnitude increases in beam brightness, and, with appropriate care in operation, a corresponding increase in source lifetime. They are, however, an order of magnitude more expensive, and may be easily damaged (by improper vacuum conditions and thermal shock) during saturation/desaturation operations. These operations typically require several minutes of an operator's attention, which becomes tedious and subject to error, particularly since the emitter must be cooled during sample exchanges to minimize damage from random vacuum excursions. We have designed a control system for LaBg emitters which relieves the operator of the necessity for manually controlling the emitter power, minimizes the danger of accidental improper operation, and makes the use of these emitters routine on multi-user instruments.Figure 1 is a block schematic of the main components of the control system, and Figure 2 shows the control box.


Author(s):  
Takao Suzuki ◽  
Hossein Nuri

For future high density magneto-optical recording materials, a Bi-substituted garnet film ((BiDy)3(FeGa)5O12) is an attractive candidate since it has strong magneto-optic effect at short wavelengths less than 600 nm. The signal in read back performance at 500 nm using a garnet film can be an order of magnitude higher than a current rare earth-transition metal amorphous film. However, the granularity and surface roughness of such crystalline garnet films are the key to control for minimizing media noise.We have demonstrated a new technique to fabricate a garnet film which has much smaller grain size and smoother surfaces than those annealed in a conventional oven. This method employs a high ramp-up rate annealing (Γ = 50 ~ 100 C/s) in nitrogen atmosphere. Fig.1 shows a typical microstruture of a Bi-susbtituted garnet film deposited by r.f. sputtering and then subsequently crystallized by a rapid thermal annealing technique at Γ = 50 C/s at 650 °C for 2 min. The structure is a single phase of garnet, and a grain size is about 300A.


Author(s):  
William Krakow

In recent years electron microscopy has been used to image surfaces in both the transmission and reflection modes by many research groups. Some of this work has been performed under ultra high vacuum conditions (UHV) and apparent surface reconstructions observed. The level of resolution generally has been at least an order of magnitude worse than is necessary to visualize atoms directly and therefore the detailed atomic rearrangements of the surface are not known. The present author has achieved atomic level resolution under normal vacuum conditions of various Au surfaces. Unfortunately these samples were exposed to atmosphere and could not be cleaned in a standard high resolution electron microscope. The result obtained surfaces which were impurity stabilized and reveal the bulk lattice (1x1) type surface structures also encountered by other surface physics techniques under impure or overlayer contaminant conditions. It was therefore decided to study a system where exposure to air was unimportant by using a oxygen saturated structure, Ag2O, and seeking to find surface reconstructions, which will now be described.


Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


Sign in / Sign up

Export Citation Format

Share Document