On the Formation of Spherical Particles in Surface Grinding

Author(s):  
Harish Singh Dhami ◽  
Koushik Viswanathan

Abstract Grinding swarf is conventionally of secondary interest to the process engineer. However, it has long been recognized that it is a useful indicator of process performance — the exact particle morphologies occurring in the swarf contain a wealth of information about the abrasive-workpiece interaction mechanics. In this work, we study the generation of perfectly spherical particles when grinding two plain carbon steels and a grade of stainless steel with an alumina wheel. Similar particles have also been reported in the wear community and several possible formation mechanisms have been discussed including chip curl resulting from electronic charge distributions; melting due to local flash temperatures in the grinding zone; and repeated abrasive wear of the workpiece surface. We postulate that the particles are likely formed as a result of an oxidation-melting-solidification route with small grinding chips. We present spectroscopy and X-ray diffraction data in support of this hypothesis — significant oxygen content, in the form of Fe3O4 was detected on the surface of the spheres. Electron micrographs also show remarkably robust dendrite-like structures on the surface of the particles, indicative of rapid solidification from the melt. Motivated by these results, we present model calculations to support our hypothesis. We first evaluate the initial temperature of chips exiting the grinding zone using a three-way heat partition model for dry grinding. An upper bound for the chip temperature is ∼ 600°C, well-below the melting point for the metal. Next, we show that the oxidation kinetics at this elevated temperature are such that the formation of a thin oxide layer (∼ 2μm) on the surface of an initially curled up chip, with size ∼ 50 μm comparable to the observed spheres, is enough to melt the entire chip on a timescale of 10−6 seconds. Surface tension then brings the molten chip into a perfectly spherical shape, followed by rapid solidification. We present a preliminary calculation of this solidification process, using a coupled heat conduction model along with a moving interphase interface. By making suitable approximations, we derive an ordinary differential equation describing the temporal evolution of the interface location. Coupling the interface velocity with a Mullins-Sekerka type instability analysis, we argue that solidification of these drops likely starts from a nucleated core in the drop interior, resulting in dendrite-type patterns on the outer surface. Our work is a preliminary attempt to put decades old observations of grinding swarf on a firm quantitative footing. The experimental evidence and related analysis presented here make a strong case for the oxidation-melting-solidification hypothesis for the formation of spherical particles in grinding swarf.

Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 276
Author(s):  
Kui Chen ◽  
Baohong Hou ◽  
Hao Wu ◽  
Xin Huang ◽  
Fei Li ◽  
...  

Many drugs have a propensity for agglomeration, resulting in poor flowability. Spherical crystallization can be used to improve product properties including flowability and particle size. In this work, two methods were developed and utilized to successfully make two kinds of azithromycin spherical particles, namely solid and hollow spheres. The resultant product exhibited regular spherical shape, large particle size, narrow particle size distribution and excellent flowability. The formation mechanism of these different spherical crystals was investigated with the help of a particle vision microscope (PVM). The immersion mechanism and the counter diffusion mechanism were proposed as the formation mechanisms for solid and hollow spheres, respectively. The effects of crystallization parameters on the spherical crystallization processes were investigated systematically. Furthermore, the tablet properties were evaluated to verify that the spherical particles obtained in this work can be directly used for tableting, thus avoiding granulation processes and reducing cost.


Author(s):  
Tatu Pinomaa ◽  
Matti Lindroos ◽  
Paul Jreidini ◽  
Matias Haapalehto ◽  
Kais Ammar ◽  
...  

Rapid solidification leads to unique microstructural features, where a less studied topic is the formation of various crystalline defects, including high dislocation densities, as well as gradients and splitting of the crystalline orientation. As these defects critically affect the material’s mechanical properties and performance features, it is important to understand the defect formation mechanisms, and how they depend on the solidification conditions and alloying. To illuminate the formation mechanisms of the rapid solidification induced crystalline defects, we conduct a multiscale modelling analysis consisting of bond-order potential-based molecular dynamics (MD), phase field crystal-based amplitude expansion simulations, and sequentially coupled phase field–crystal plasticity simulations. The resulting dislocation densities are quantified and compared to past experiments. The atomistic approaches (MD, PFC) can be used to calibrate continuum level crystal plasticity models, and the framework adds mechanistic insights arising from the multiscale analysis. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


2018 ◽  
Vol 1 (1) ◽  
pp. 57-66
Author(s):  
Fenfen Fenda Florena ◽  
◽  
Dwindra Wilham Maulana ◽  
Ferry Faizal ◽  
Bambang Mukti Wibawa ◽  
...  

Spherical particles of Zn doped MgO were prepared by one-step spray pyrolysis method. The crystalline nature and particle size of the samples were characterized by X-ray diffraction analysis (XRD). The morphology of samples was studied by scanning electron microscope (SEM) and the presence of Zn in the sample was confirmed by energy dispersive X-ray analysis (EDX). The optical properties of the samples were investigated using photoluminescence spectroscopy (PL) analysis to obtain excitation and emission spectra of the samples. Results indicated that the doped MgO particles exhibited a cubic structure without hexagonal wurtzite structure as the Zn concentrations were increased. Spherical shape and porous particles are found with increasing of doping concentration. The optical band gap of MgO altered with the addition of doping concentration. A considerable redshift of about ~0.08 – 0.13 eV in the excitation spectra of 2.22 eV emission band was revealed in Zn doped MgO samples. It was highlighted that Zn doped MgO prepared by the spray pyrolysis generated emission at UV-Vis wavelength required for many applications.


2018 ◽  
Vol 14 (2) ◽  
pp. 99-104
Author(s):  
F. Fitriah ◽  
A. Doyan ◽  
S. Susilawati ◽  
S. Wahyuni

One of the renewable energy storage systems that can be used today is the aluminum ion battery. In this study, aluminum foil was used as anode, polyetylene polyprophylene (PE/PP) as separator, electrolyte from AlCl3/[EMIm]Cl and graphite coated corncob, an activated charcoal, as cathode. Coating method of cathode materials was done by mixing both graphite and activated charcoal with varied composition 1:0.5, 1:1, 1:1.5, and 1:3. The coating process began by mixing the graphite and corncob with ethanol as a solvent for six hours, then heating in an oven at 80 °C for three days, gradual drying in a furnace at 350 °C for five hours and sintering at 600 °C for six hours. From this research, SEM results showed that carbon particles were evenly distributed, with spherical particles. The spherical shape was the main requirement of carbon formation in order to produce high energy. Based on the results, battery potential was 2.54 V with average of optimal capacity at a ratio of graphite and corncob activated charcoal 1:1.5 was 83.067 mAh/g. The highest efficiency was also at a ratio of 1:1.5 of 97.20%, because at this ratio, there was an increasing in percentage of element C 91.74%, greater than the percentage of element C on the other three cathode samples.Salah satu sistem penyimpan energi terbarukan yang bisa digunakan saat ini adalah baterai ion aluminium. Pada penelitian ini digunakan aluminium foil sebagai anoda, polyetylene polyprophylene (PE/PP) sebagai separator, elektrolit menggunakan AlCl3/[EMIm]Cl dan grafit terlapisi arang aktif tongkol jagung sebagai bahan katoda. Metode pelapisan bahan katoda dilakukan dengan mencampurkan grafit dan arang aktif dengan variasi komposisi 1:0,5, 1:1,1:1,5 dan 1:3. Proses pelapisan diawali dengan pencampuran grafit dan arang aktif tongkol jagung dengan ethanol sebagai pelarut selama enam jam kemudian pemanasan di oven pada suhu 80oC selama tiga hari, pengeringan bertahap di furnace pada suhu 350oC selama lima jam dan sintering pada suhu 600oC selama enam jam. Dari penelitian ini didapatkan hasil SEM menunjukkan bahwa partikel karbon terdistribusi merata, dengan bentuk partikel bulat (sphare).Sampelberbentuk bulat atau sphere merupakan syarat utama pembentukan karbon supaya dapat menghasilkan energi tinggi. Berdasarkan hasil uji baterai diperoleh potensial sebesar 2,54 Volt dengan rata-rata kapasitas optimal terjadi pada rasio grafit dan arang aktif tongkol jagung 1:1,5 sebesar 83,067 mAh/g. Efisiensi tertinggi juga terjadi pada rasio 1:1,5 sebesar 97,20%. Hal ini karena pada rasio 1:1,5 terjadi peningkatan persentase unsur C yakni 91.74% lebih besar dari persentase unsur C pada tiga sampel katoda yang lainnya.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 325
Author(s):  
Song ◽  
Lei ◽  
Zhong

: Spherical Fe50Ni50 alloy powders were fabricated via a novel route based on in-situ interface de-wetting between liquid Fe-Ni alloy and alumina. The obtained Fe50Ni50 alloy particles exhibit very good spherical shape according to SEM images. Furthermore, the cross-sectional SEM images show that there are no pores and bulk inclusions in the internal region of the spherical particles. The XRD results show a trace amount of the impurity alumina phase appearing in taenite phase. The size distribution agreed well with the SEM observation confirms that the alumina powders successfully segregated pre-alloy powders. As an incidental benefit, the surface alumina particles were treated as the electrical insulation coatings. The magnetic character shows that spherical Fe50Ni50 powders exhibit a good soft magnetic property even though with a slightly decreasing of saturation magnetization due to non-magnetic coatings. Our strategies provide a method to in-situ fabricate insulation coated Fe-Ni spherical alloy powders as magnetic powder core.


1990 ◽  
Vol 213 ◽  
Author(s):  
Jeffrey A. West ◽  
James T. Manos ◽  
Michael J. Aziz

ABSTRACTThin films of Ni3Al formed by co-evaporation onto insulating substrates form a single phase fcc disordered lattice upon rapid solidification following excimer laserinduced melting with an interface velocity of ~4 m/s. Transmission Electron Microscopy (TEM) and x-ray diffraction (XRD) analyses exhibit no superlattice diffraction at room temperature. Resistivity measurements, indicating that the disordered phase has a higher resistivity and much smaller temperature coefficient at room temperature than the stable ordered (L12) phase, permit us to monitor phase changes and ordering on a fast time-scale. Subsequent annealing recovers long-range order, with resistivity measurements indicating that reordering begins just below 300°C.


2017 ◽  
Vol 26 (10) ◽  
pp. 1750063 ◽  
Author(s):  
Manjeet Singh Gautam

This work systematically analyzed the fusion dynamics of the projectile-target combinations involving stable and loosely bound systems within the view of the energy-dependent Woods–Saxon potential model (EDWSP model) and the coupled channel approach. The different projectiles are bombarded onto series of Sm-isotopes, which possess the dominance of the different kinds of the nuclear structure degrees of freedom and with the increase of the neutron richness, the Sm-isotopes gradually shift from spherical shape to a statically deformed shape. In the fusion of [Formula: see text] reaction, the impacts of vibrational degrees of freedom of the colliding nuclei are dominant while in the case of [Formula: see text] systems, the rotational states of the deformed target isotopes have a strong impression on the below-barrier fusion data. The heavier target isotopes ([Formula: see text] also exhibit the higher order deformation such as [Formula: see text], [Formula: see text]-deformation parameter in its ground state and couplings to such channels must be incorporated in theoretical calculations in order to achieve close agreement with the sub-barrier fusion data. However, in the case of the loosely bound systems, the projectile breakup channel significantly affects the fusion excitation functions in the domain of the Coulomb barrier. To ensure the role of the projectile breakup channel, the fusion of the different loosely bound projectiles ([Formula: see text] and [Formula: see text] with Sm-isotopes are investigated, wherein the above-barrier fusion data of these reactions are suppressed with reference to the coupled channel calculations. This hindrance is the result of the projectile breakup effects that occur as a consequence of the breakup of the projectile before reaching the fusion barrier due to its low binding energy. However, in the EDWSP model calculations the magnitude of the hindrance of the above-barrier fusion data of [Formula: see text] and [Formula: see text] reactions is reduced by a factor varying from 7% to 13% with respect to a value reported in the literature. In contrast to this, the sub-barrier fusion enhancement of [Formula: see text] and [Formula: see text] reactions is the result of the dominance of the nuclear structure degrees of freedom of the colliding systems.


2007 ◽  
Vol 280-283 ◽  
pp. 1153-1156 ◽  
Author(s):  
Li Zhao ◽  
Jia Guo Yu ◽  
Rui Guo ◽  
Bei Cheng

Monodispersed mesoporous silicon dioxide microspheres were prepared by polymerization-induced colloid aggregation (PICA) method and calcined at 850oC. The prepared samples were characterized with scanning electron microscopy (SEM), thermogravimetry (TG) and BET surface areas. The results showed that the obtained SiO2 microspheres had an average diameter of about 2.0 µm, a surface area of 253.3 m2g-1, an average pore volume of 0.62 mLg-1, and an average pore diameter of 7.9 nm. The formation mechanism of SiO2 spherical particles was discussed.


1995 ◽  
Vol 398 ◽  
Author(s):  
J.A. Kittl ◽  
M.J. Aziz ◽  
D.P. Brunco ◽  
M.O. Thompson

ABSTRACTDuring rapid solidification, deviations from local interfacial equilibrium are manifested by solute trapping and interfacial undercooling. Both the solute trapping function and the interface velocity-temperature function have been measured in the Si:As alloy system following pulsed laser melting, permitting us to test models for nonequilibrium interface kinetics. The results are consistent with the Continuous Growth Model “without solute drag” of Aziz and Kaplan and are inconsistent with models that incorporate solute drag effects during solidification.


Sign in / Sign up

Export Citation Format

Share Document