scholarly journals Open-source multi-purpose sensor for measurements in continuous capillary flow

Author(s):  
Stefan Höving ◽  
Jens Bobers ◽  
Norbert Kockmann

Abstract Limited applicability and scarce availability of analytical equipment for micro- and millifluidic applications, which are of high interest in research and development, complicate process development, control, and monitoring. The low-cost sensor presented in this work is a modular, fast, non-invasive, multi-purpose, and easy to apply solution for detecting phase changes and concentrations of optically absorbing substances in single and multi-phase capillary flow. It aims at generating deeper insight into existing processes in fields of (bio-)chemical and reaction engineering. The scope of this work includes the application of the sensor to residence time measurements in a heat exchanger, a tubular reactor for concentration measurements, a tubular crystallizer for suspension detection, and a pipetting robot for flow automation purposes. In all presented applications either the level of automation has been increased or more information on the investigated system has been gained. Further applications are explained to be realized in the near future. Article highlights • An affordable multipurpose sensor for phase differentiation, concentration measurements, and process automation has been developed and characterized • The sensor is easily modified and can be applied to various tubular reaction/process units for analytical and automation purposes • Simple integration into existing process control systems is possible Graphical abstract

1997 ◽  
Vol 471 ◽  
Author(s):  
D. Endisch ◽  
K. Barth ◽  
J. Lau ◽  
G. Peterson ◽  
A. E. Kaloyeros ◽  
...  

ABSTRACTSrS:Ce is an important material for full color electroluminescent (EL) flat panel displays. Using a combination of SrS:Ce/ZnS:Mn and appropriate color filters high quality full color displays have been demonstrated [1]. Major issues for commercially viable process integration of SrS:Ce are the combination of high luminance, high growth rate, and process temperatures below 600°C for compatibility with low cost glass substrates. This work describes the process development and optimization of metal-organic chemical vapor deposition (MOCVD) of SrS:Ce. MOCVD is a promising candidate for deposition of SrS:Ce because it can provide the required growth rates and allows control of crystal structure and stoichiometry. Growth of SrS:Ce was performed in the temperature range from 400°C to 530°C using Sr(tmhd)2, Ce(tmhd)4, and H2S as precursors. The structure of the SrS:Ce was found to be strongly dependent on the H2S flow. A brightness of 15 fL and an efficiency of 0.22 lm/W has been achieved (40 V above threshold voltage, 60 Hz AC). Film analysis included Rutherford backscattering (RBS), X-ray diffraction (XRD), atomic force microscopy (AFM), and EL measurements. Results on the correlation between process parameters, film structure, grain size and EL performance will be presented.


2018 ◽  
Vol 41 (4) ◽  
pp. 555-564 ◽  
Author(s):  
Florencia Eberhardt ◽  
Andres Aguirre ◽  
Luciana Paoletti ◽  
Guillermo Hails ◽  
Mauricio Braia ◽  
...  

Author(s):  
Michael G. Mauk

Image capturing, processing, and analysis have numerous uses in solar cell research, device and process development and characterization, process control, and quality assurance and inspection. Solar cell image processing is expanding due to the increasing performance (resolution, sensitivity, spectral range) and low-cost of commercial CCD and infrared cameras. Methods and applications are discussed, with primary focus on monocrystalline and polycrystalline silicon solar cells using visible and infrared (thermography) wavelengths. The most prominent applications relate to mapping of minority carrier lifetime, shunts, and defects in solar cell wafers, in various stages of the manufacturing process. Other applications include measurements of surface texture and reflectivity, surface cleanliness, integrity of metallization lines, uniformity of coatings, and crystallographic texture and grain size. Image processing offers the capability to assess large-areas (> 100 cm2) with a non-contact, fast (~ 1 second), and modest cost. The challenge is to quantify and interpret the image data in order to better inform device design, process engineering, and quality control. Many promising solar cell technologies fail in the transition from laboratory to factory due to issues related to scale-up in area and manufacturing throughput. Image analysis provides an effective method to assess areal uniformity, device-to-device reproducibility, and defect densities. More integration of image analysis from research devices to field testing of modules will continue as the photovoltaics industry matures.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000604-000608
Author(s):  
Matthias Hartmann ◽  
Bertram Schmidt

The current research presents recent respective to the work development of a ceramic tubular probe for online substance concentration measurements. The aim was to develop a robust and acid-resistant sensor device, which can be easily included in existing procedural pipeline systems. To archive those goals a lot of factors had to be checked. For the substance concentration measurements a capacitive sensor effect was chosen. With this method even low substance concentrations down to one-tenth of a per cent can be indentified. For the package material zirconium oxide (tetragonal zirconia polycrystal – TZP) was used. Zirconium oxide is a technical ceramic which is wear-resistant, acid-resistant, has a low thermal conductivity, is electrically isolating and can be uses in a ceramic injection molding (CIM) process. In the phase of the sensor design process multiple geometries for the sensor effect and integration space for the evaluation electronics had to be considered. A standardized DN 10 DIN 32676 flanged joint was also added for an unproblematic connection to the pipelines. All these needed geometries had to be integrated into one ceramic element. As a result of these requirements a 3D CAD model of the sensor element was designed. The CAD-file has shown that there was only the CIM technology left to comprehend developed sensor geometry. CIM is a low cost process for large-scale production which is distinguished by high size accuracy. In the CIM process the material shrinkage, this is caused by the needed debindering and sintering steps, had to be considered. The developed ceramic tubular probe was successfully tested in multiple fluidic systems. It has left the test phase and is now ready for maturity phase.


1999 ◽  
Vol 5 (S2) ◽  
pp. 962-963
Author(s):  
M. VanLandingham ◽  
X. Gu ◽  
D. Raghavan ◽  
T. Nguyen

Recent advances have been made on two fronts regarding the capability of the atomic force microscope (AFM) to characterize the mechanical response of polymers. Phase imaging with the AFM has emerged as a powerful technique, providing contrast enhancement of topographic features in some cases and, in other cases, revealing heterogeneities in the polymer microstructure that are not apparent from the topographic image. The enhanced contrast provided by phase images often allows for identification of different material constituents. However, while the phase changes of the oscillating probe are associated with energy dissipation between the probe tip and the sample surface, the relationship between this energy dissipation and the sample properties is not well understood.As the popularity of phase imaging has grown, the capability of the AFM to measure nanoscale indentation response of polymers has also been explored. Both techniques are ideal for the evaluation of multi-phase and multi-component polymer systems.


Author(s):  
John P. Pollinger

Silicon nitride monolithic structural ceramic components have recently been introduced as production parts in commercial aircraft turbomachinery pump and seal applications to take advantage of their unique thermomechanical properties. Additionally, extensive efforts are in progress to develop, evaluate, and productionize silicon nitride components for commercial aircraft turbomachinery hot sections, industrial power generation turbines, and automotive hybrid vehicle turbogenerators. AlliedSignal Ceramic Components has developed a family of in-situ reinforced silicon nitride materials for these applications and is developing and implementing a suite of component fabrication processes to achieve production-viable manufacturing of complex shaped components, including turbine seals, blades, nozzles, wheels, and combustors. A key focus of the manufacturing process development is the need to achieve low cost fabrication of components in order to meet cost targets required for commercial introduction. Finally, the status and plans for a number of aerospace, industrial, and automotive turbomachinery applications are discussed, including commercial aircraft turbomachinery production components (pump and seal parts) and development components (auxiliary power unit turbine blades and nozzles, and propulsion engine wheels and starter wheels), nozzle, blade, wheel and combustor components for automotive hybrid vehicle turbogenerators, and turbine blades and nozzles for industrial power generation gas turbines.


Author(s):  
Brian K. Paul ◽  
Hadi Hasan ◽  
Tyler Dewey ◽  
David Alman ◽  
Richard D. Wilson

Microtechnology-based Energy and Chemical Systems (MECS) offer opportunities for portable power generation, distributed heat pumps, hydrogen separation for automotive fuel cells, on-site waste remediation and point-of-use chemical synthesis. In order to realize many of these applications, it is recognized that new techniques must be developed for producing microchannels within refractory materials. Material requirements include high-temperature resistance, chemical inertness and low-cost microfabrication. Advances in multilayer ceramics have allowed the microlamination of microreactor structures from ceramic tape. The tapes are formed in the green state and subsequently bonded through a sintering process. Problems include sagging, porosity, and volumetric shrinkage which can lead to dimensional instability. Intermetallics are another class of refractory materials which may hold some promise for high-temperature microchannel development. In this paper, several proposed methods of forming microchannel arrays in aluminide intermetallics are evaluated. These methods have the advantage of eliminating volumetric shrinkage due to binder removal. Results show that some NiAl systems may be suitable for microchannel designs. Issues to be addressed include cost, volumetric shrinkage due to phase changes or other creep-related phenomena incurred during phase changes.


Author(s):  
Robert E. Wendrich

Current and ongoing research and experimentations in the creation, design and build of low-cost, high-value prototypes for novel and unconventional interaction devices (IxD) in combination with cyber-physical system (CPS) (i.e. hybrid design tools (HDT), blended spaces) tangible user interfaces (TUI) and use of sensor technology lead to a variety of novel interaction modalities, experiences and possibilities. In line with this research, we propose a first prototype Human Sensor Selection Tool (HSST) as a preliminary guide and guidelines for design and engineering domains. The HSST is based on and inspired by the ‘five human senses’ [1], a plethora in human body signals (e.g. proprioceptive, vestibular) and gestures (e.g. facial expression, (e-)motions) that could be integrated, translated, transformed, adapted or mimicked to enhance and enrich the interaction modalities with for example computer-aided design (CAD), computer-aided technologies (CAx), and effectively affective CPS.


Sign in / Sign up

Export Citation Format

Share Document