scholarly journals Experimental Study on the Fracture Behaviors Effect of Stress Conditions on the Fracture of Shale by Super-Critical Carbon Dioxide

2021 ◽  
Vol 9 ◽  
Author(s):  
Guojun Liu ◽  
Yuan Zhao ◽  
Yugang Cheng

This paper examines the fracture propagation problems of supercritical carbon fracturing in low permeability shale. Acoustic emission monitoring and computerized tomography (CT) scanning methods were used to study the influence of initial stress ratios on crack initiation and propagation crack in fracturing experiments. The results show that crack initiation pressure and crack morphology are very different under different stress conditions. Under the condition of constant confining pressure, when the initial stress ratio λ = 1, cracks are mainly in a horizontal direction; while for an initial stress ratio of λ < 1, cracks are mainly in a vertical direction. With the decrease of λ, crack initiation pressure, reopening pressure, and fracturing liquid volume also decrease, and crack propagation is not as obvious. According to CT scanning results, the crack propagation direction is the same as the maximum principal stress, and fewer cracks are initiated with a smaller initial stress ratio. Based on the acoustic emission characteristics, the fracturing process (including crack initiation, propagation, and closure), can be divided into three stages: 1) the pressure accumulation in the wellbore, 2) Pump Closure; and 3) crack reopening. This study provides the basis for a reasonable selection of shale gas fracturing formation and geo-sequestration of greenhouse gas CO2.

2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Shen Wang ◽  
Hani Mitri ◽  
Huamin Li ◽  
Dongyin Li ◽  
Wen Wang

When inducing cracks, soundless cracking agents (SCAs) do not generate vibration, harmful gas, dust, nor flying rock fragment, making them suitable for hard rock roof breaking, rock burst prevention, oil or gas reservoir stimulation, and building demolition. In this study, SCA-induced crack initiation and propagation in different stress conditions were modelled using a modified cohesive element method. A new traction-separation law for describing rock compressive shear strength was proposed. The crack length and direction in bidirectional isobaric and unequal stress fields were analyzed in detail. The crack initiation pressure and the incremental ratio of crack length to SCA expansion pressure were proposed as two indicators to evaluate the difficulty in rock breaking in deep underground. Results indicate that (1) the modified cohesive element method used in this study is feasible to model crack propagation in deep rocks; (2) the maximum expansion pressure of SCAs depends on rock elastic modulus and geostress field and should be measured under a condition similar to deep underground prior to SCA borehole spacing design; when using the SCAs with a maximum expansion pressure of 100 MPa in 600 m underground, the suggested borehole spacing is less than 220 mm; and (3) σ3 dominates the crack initiation pressure while the principal stress ratio σ3/σ1 and notch direction control the direction of crack propagation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xizhen Sun ◽  
Fanbao Meng ◽  
Ce Zhang ◽  
Xucai Zhan ◽  
He Jiang

The geometric distribution of initial damages has a great influence on the strength and progressive failure characteristics of the fractured rock mass. Initial damages of the fractured rock were simplified as parallel cracks in different geometric distributions, and then, the progressive failure and acoustic emission (AE) characteristics of specimens under the uniaxial compression loading were analyzed. The red sandstone (brittle materials) specimens with the parallel preexisting cracks by water jet were used in the tests. The energy peak and stress attenuation induced by the energy release of crack initiation were intuitively observed in the test process. Besides, three modes of rock bridge coalescence were obtained, and wing crack was the main crack propagation mode. The wing crack and other cracks were initiated in different loading stages, which were closely related to the energy level of crack initiation. The propagation of wing crack (stable crack) consumed a large amount of energy, and then, the propagation of shear crack, secondary crack, and anti-wing crack (unstable crack) was inhibited. The relationship between the crack propagation mode and the geometric distribution of existing cracks in the specimen was revealed. Meanwhile, the strength characteristic and failure mode of fractured rock with the different geometric distributions of preexisting crack were also investigated. The energy evolution characteristics and crack propagation were also analyzed by numerical modeling (PFC2D).


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 14 ◽  
Author(s):  
Ayal Wanniarachchi ◽  
Ranjith Pathegama Gamage ◽  
Qiao Lyu ◽  
Samintha Perera ◽  
Hiruni Wickramarathne ◽  
...  

Hydro-fracturing is a common production enhancement technique used in unconventional reservoirs. However, an effective fracturing process requires a precise understanding of a formation’s in-situ strength behavior, which is mainly dependent on the formation’s in-situ stresses and fluid saturation. The aim of this study is to identify the effect of brine saturation (concentration and degree of saturation (DOS)) on the mechanical properties of one of the common unconventional reservoir rock types, siltstone. Most common type of non-destructive test: acoustic emission (AE) was used in conjunction with the destructive tests to investigate the rock properties. Unconfined compressive strength (UCS) and splitting tensile strength (STS) experiments were carried out for 78 varyingly saturated specimens utilizing ARAMIS (non-contact and material independent measuring system) and acoustic emission systems to determine the fracture propagation. According to the experimental results, the increase in degree of pore fluid saturation (NaCl ionic solution) causes siltstone’s compressive and tensile strengths to be reduced through weakening and breakage of the existing bonding between clay minerals. However, increasing NaCl concentration in the pore fluid generally enhances the compressive strength of siltstone through associated NaCl crystallization effect and actually reduces the tensile strength of siltstone through the corrosive influence of the NaCl ions. Moreover, results show that AE capture and analysis is one of the most effective methods to understand crack propagation behavior in rocks including the crack initiation, crack propagation, and final failure. The findings of this study are important for the identification of fluid saturation dependent in-situ strength conditions for successful hydro-fracturing in low permeable reservoirs.


2017 ◽  
Vol 17 (3) ◽  
pp. 423-433 ◽  
Author(s):  
Davide Crivelli ◽  
John McCrory ◽  
Stefano Miccoli ◽  
Rhys Pullin ◽  
Alastair Clarke

The phenomenon of fatigue in gears at the tooth root can be a cause of catastrophic failure if not detected in time. Where traditional low-frequency vibration may help in detecting a well-developed crack or a completely failed tooth, a system for early detection of the nucleation and initial propagation of a fatigue crack can be of great use in condition monitoring. Acoustic emission is a potentially suitable technique, as it is sensitive to the higher frequencies generated by crack propagation and is not affected by low-frequency noise. In this article, a static gear pair is tested where a crack was initiated at a tooth root. Continuous acoustic emission was periodically recorded throughout the test. Data were processed in multiple ways to support the early detection of crack initiation. Initially, traditional feature–based acoustic emission was employed. This showed qualitative results indicating fracture initiation around 8000 cycles. A rolling cross-correlation was then employed to compare two given system states, showing a sensitivity to large changes towards the final phases of crack propagation. A banded fast Fourier transform approach showed that the 110- to 120-kHz band was sensitive to the observed crack initiation at 8000 cycles, and to the later larger propagation events at 22,000 cycles. Two advanced data processing techniques were then used to further support these observations. First, a technique based on Chebyshev polynomial decomposition was used to reduce each wavestream data to a vector of 25 descriptors; these were used to track the system deviation from a baseline state and confirmed the previously observed deviations with a higher sensitivity. Further confirmation came from the analysis of wavestream entropy content, providing support from multiple data analysis techniques on the feasibility of system state tracking using continuous acoustic emission.


Author(s):  
Yujian Ren ◽  
Yuanzhe Dong ◽  
Jingxiang Li ◽  
Fei Zhao ◽  
Shengdun Zhao ◽  
...  

Compared to the traditional cropping technology, low-cycle fatigue cropping can reduce load and improve cross-section quality. Geometric factors of V-shaped notch and processing parameters (such as load amplitude and load frequency) influence the cropping efficiency and section quality. By changing the factors, the sufficient efficiency of cropping and quality of cross-section get together. However, the influences of material defects, geometric parameters, loading frequency and other factors are different in each stage of the whole cropping process. If the effects of the parameters on the each stage of cropping process are clear, the higher productivity and the better cross-section quality will be obtained by applying suitable parameter on each stage of cropping process. To investigate the effects of eccentric ratio on each stage of low –cycle fatigue cropping process, a suitable monitoring method is needed. This study proposes acoustic emission (AE) technique to detect the low-cycle fatigue cropping process of 16 Mn eccentric bar (The bar prefabricated eccentric notches. The prefabricated notch improve the efficiency of cropping). The parameters of signals such as counts and kurtosis during the low–cycle fatigue process are obtained. According to the counts changes over time, the process of the 16 Mn metal bar cropping can be divided into three stages: the crack initiation stage, the crack propagation stage, and the fracture stage. Based on the cumulative counts, the eccentric ratio’s influence on the time of each cropping process stage is obtained. The time of the crack initiation stage and the final fracture stage doesn’t increase with the eccentric ratio. The time of the propagation stage influenced by the eccentric ratio greatly. Besides, the eccentric ratio’s influence on the cross-section quality is studied by using an advanced optical microscope system. The cross-section quality was influenced by the eccentric ratio significantly. The results of the paper indicate the acoustic emission (AE) monitoring technique is a useful method to detect the process of low-cycle fatigue cropping. Especially, it provide effective information to investigate the effects of the notch eccentric ratio during the low-cycle fatigue cropping process. The eccentric ratio’s effects on each stage of low-cycle fatigue cropping process offer guidance to improve low-stress fatigue cropping efficiency and cross-section quality.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2690
Author(s):  
Bo Pan ◽  
Xuguang Wang ◽  
Zhenyang Xu ◽  
Lianjun Guo ◽  
Xuesong Wang

The Split Hopkinson Pressure Bar (SHPB) is an apparatus for testing the dynamic stress-strain response of the cement mortar specimen with pre-set joints at different angles to explore the influence of joint attitudes of underground rock engineering on the failure characteristics of rock mass structure. The nuclear magnetic resonance (NMR) has also been used to measure the pore distribution and internal cracks of the specimen before and after the testing. In combination with numerical analysis, the paper systematically discusses the influence of joint angles on the failure mode of rock-like materials from three aspects of energy dissipation, microscopic damage, and stress field characteristics. The result indicates that the impact energy structure of the SHPB is greatly affected by the pre-set joint angle of the specimen. With the joint angle increasing, the proportion of reflected energy moves in fluctuation, while the ratio of transmitted energy to dissipated energy varies from one to the other. NMR analysis reveals the structural variation of the pores in those cement specimens before and after the impact. Crack propagation direction is correlated with pre-set joint angles of the specimens. With the increase of the pre-set joint angles, the crack initiation angle decreases gradually. When the joint angles are around 30°–75°, the specimens develop obvious cracks. The crushing process of the specimens is simulated by LS-DYNA software. It is concluded that the stresses at the crack initiation time are concentrated between 20 and 40 MPa. The instantaneous stress curve first increases and then decreases with crack propagation, peaking at different times under various joint angles; but most of them occur when the crack penetration ratio reaches 80–90%. With the increment of joint angles in specimens through the simulation software, the changing trend of peak stress is consistent with the test results.


2021 ◽  
Vol 11 (10) ◽  
pp. 4435
Author(s):  
Ho-Quang NGUYEN ◽  
Trieu-Nhat-Thanh NGUYEN ◽  
Thinh-Quy-Duc PHAM ◽  
Van-Dung NGUYEN ◽  
Xuan Van TRAN ◽  
...  

Understanding of fracture mechanics of the human knee structures within total knee replacement (TKR) allows a better decision support for bone fracture prevention. Numerous studies addressed these complex injuries involving the femur bones but the full macro-crack propagation from crack initiation to final failure and age-related effects on the tibia bone were not extensively studied. The present study aimed to develop a patient-specific model of the human tibia bone and the associated TKR implant, to study fatigue and fracture behaviors under physiological and pathological (i.e., age-related effect) conditions. Computed tomography (CT) data were used to develop a patient-specific computational model of the human tibia bone (cortical and cancellous) and associated implants. First, segmentation and 3D-reconstruction of the geometrical models of the tibia and implant were performed. Then, meshes were generated. The locations of crack initiation were identified using the clinical observation and the fatigue crack initiation model. Then, the propagation of the crack in the bone until final failure was investigated using the eXtended finite element method (X-FEM). Finally, the obtained outcomes were analyzed and evaluated to investigate the age-effects on the crack propagation behaviors of the bone. For fatigue crack initiation analysis, the stress amplitude–life S–N curve witnessed a decrease with increasing age. The maximal stress concentration caused by cyclic loading resulted in the weakening of the tibia bone under TKR. For fatigue crack propagation analysis, regarding simulation with the implant, the stress intensity factorand the energy release rate tended to decrease, as compared to the tibia model without the implant, from 0.152.5 to 0.111.9 (MPa) and from 10240 to 5133 (J), respectively. This led to the drop in crack propagation speed. This study provided, for the first time, a detailed view on the full crack path from crack initiation to final failure of the tibia bone within the TKR implant. The obtained outcomes also suggested that age (i.e., bone strength) also plays an important role in tibia crack and bone fracture. In perspective, patient-specific bone properties and dynamic loadings (e.g., during walking or running) are incorporated to provide objective and quantitative indicators for crack and fracture prevention, during daily activities.


Sign in / Sign up

Export Citation Format

Share Document