scholarly journals Long-wavelength UVA enhances UVB-induced cell death in cultured keratinocytes: DSB formation and suppressed survival pathway

Author(s):  
Yuko Ibuki ◽  
Yukako Komaki ◽  
Guang Yang ◽  
Tatsushi Toyooka
Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2562-2562
Author(s):  
Cuiping Zhang ◽  
Xiaojing Cui ◽  
Ying Liang

Abstract Radiation-associated bone marrow (BM) injury is one of the most serious limiting factors of radiotherapy. Radiation-induced hematopoietic injury, no matter how transient or long lasting, can ultimately impair HSC function and decrease the HSC reserve, leading to increased risk for the development of BM failure or cancer. However, molecular mechanisms underlying radiation-induced HSC functional decline are largely unknown. We previously identified a stem cell regulatory gene, latexin (Lxn), as a novel negative regulator of HSCs in mice. HSCs in Lxn knockout mice (Lxn-/-) had increased self-renewal and survival. In our new findings, we surprisingly found that Lxn-/- mice had the significant survival advantages under lethal dose of total body irradiation (TBI). We further found that HSCs and hematopoietic progenitor cells (HPCs), measured by immunophenotypes and colony assay, recovered much faster in Lxn-/- mice than wild-type mice (WT) within one month after sub-lethal dose of TBI. The better preserved HSC/HPC pool was due to the decreased apoptosis in which the percentage of Annexin V + PI- apoptotic HSCs/HPCs cells was significantly lower in Lxn-/- mice than WT mice. These data suggest that Lxn inactivation protects HSCs and HPCs from radiation-induced cell death, thus mitigating acute hematopoietic suppression and conferring a survival advantage. To determine the long-term effect of TBI on Lxn-/- HSCs, we performed limiting dilution competitive repopulation unit assay (CRU), and found that Lxn-/- CRU was significantly higher than WT CRU. Moreover, we performed serial transplantation experiment, and found that Lxn-/- HSC continuously regenerated blood and bone marrow cells even at the 4th round of transplantation whereas WT HSCs were exhausted. These data provide robust evidence that Lxn inactivation protects functional long-term HSCs from radiation-induced injury. Radiation can increase the risk of hematological malignancy later in the life. We thus maintained a group of mice that were subject to either a single dose of 6.5Gy TBI or split low doses of TBI (2 Gy daily for 6 days), and monitored their gross condition and blood cell counts for 20 months. At 20 month post-radiation, we performed bone marrow analysis and histopathology analysis. We found that Lxn-/- mice did not spontaneously develop hematopoietic malignancies, their bone marrow HSCs/HPCs had normal population size, and bone marrow had normal histopathology. These data suggest that Lxn inactivation mitigates radiation-induced short-term myelosuppression and long-term HSC functional impairment without induction of hematologic malignancy. At the molecular level, we previously reported that Lxn sensitized leukemogenic cells to gamma-irradiation-induced cell-cycle arrest and cell death through Rps3 pathway, and Rps3 was a binding protein of Lxn. Rps3 has been shown to be involved in the NFkB pathway. We found that Rps3 bound Lxn in primary hematopoietic stem and progenitor cells (HSPCs) using Co-IP assay. Lxn-/- HSPCs had the increased expression of Rps3 and NFkB p65 before or post-irradiation. Knockdown of Rps3 in Lxn-/- HSPCs decreased NFkB p65 and increased radiation-induced apoptosis. Moreover, when Lxn-/- HSPCs were treated with NFkB p65 specific inhibitor, the similar phenotypes were also shown, suggesting that Lxn functions through Rps3-NFkB-mediated pro-survival pathway in primary HSPCs. We are currently proving this molecular pathway using the in vivo model by crossing p65 knockout mice with Lxn-/- mice. In conclusion, latexin inhibition mitigates irradiation induced hematopoietic injury via Rps3-NFkB-mediated pro-survival pathway. Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 82 (7) ◽  
pp. 3796-3802 ◽  
Author(s):  
Arnaud Autret ◽  
Sandra Martin-Latil ◽  
Cynthia Brisac ◽  
Laurence Mousson ◽  
Florence Colbère-Garapin ◽  
...  

ABSTRACT Poliovirus (PV)-induced apoptosis seems to play a major role in tissue injury in the central nervous system (CNS). We have previously shown that this process involves PV-induced Bax-dependent mitochondrial dysfunction mediated by early JNK activation in IMR5 neuroblastoma cells. We showed here that PV simultaneously activates the phosphatidylinositol 3-kinase (PI3K)/Akt survival signaling pathway in these cells, limiting the extent of JNK activation and thereby cell death. JNK inhibition is associated with PI3K-dependent negative regulation of the apoptosis signal-regulating kinase 1, which acts upstream from JNK in PV-infected IMR5 cells. In poliomyelitis, this survival pathway may limit the spread of PV-induced damage in the CNS.


2010 ◽  
Vol 298 (1) ◽  
pp. H152-H157 ◽  
Author(s):  
Hongguang Wei ◽  
Richard S. Vander Heide

Heat stress (HS)-induced cardioprotection is associated with the activation of focal adhesion kinase (FAK) and protein kinase B (Akt) in neonatal rat ventricular myocytes (NRVMs), suggesting that stress-induced activation of survival pathways may be important in protecting intact hearts from irreversible injury. The purposes of this study were 1) to examine the subcellular signaling pathways activated by HS and ischemic preconditioning (IP) in intact hearts, 2) to determine whether HS and IP activate an integrated survival pathway similar to that activated by HS in cultured NRVMs, and 3) to determine whether HS and IP reduce lethal cell injury in perfused intact hearts. Adult rat hearts perfused in the Langendorff mode were subjected to 25 min of global ischemia and 30 min of reperfusion (I/R) either 24 h after whole animal HS or following a standard IP protocol. Myocardial signaling was analyzed using Western blot analysis, whereas cell death was assayed by measuring lactate dehydrogenase release into the perfusate and confirmed by light microscopy. Similar to NRVMs, HS performed in the whole animal 24 h before I/R increased phosphorylation of FAK at tyrosine-397 and protein kinase B (Akt) and resulted in protection from cell death. Using IP as a myocardial stress also resulted in an increased phosphorylation/activation of both FAK and Akt and resulted in reduced cell death in adult perfused rat hearts subjected to I/R. In conclusion, 1) myocardial stress caused by whole animal HS activates cytoskeletal-based survival signaling pathways in whole heart tissue and reduces lethal I/R injury and 2) IP activates the same stress-induced survival pathway and the activation correlates with the well-known cardioprotective effect of IP on lethal I/R injury.


PLoS ONE ◽  
2010 ◽  
Vol 5 (9) ◽  
pp. e13121 ◽  
Author(s):  
Amanda Lucas ◽  
Yuri Kim ◽  
Omayra Rivera-Pabon ◽  
Sunju Chae ◽  
Dong-Hyun Kim ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Minfei Su ◽  
Yang Mei ◽  
Sangita Sinha

Autophagy and apoptosis are catabolic pathways essential for organismal homeostasis. Autophagy is normally a cell-survival pathway involving the degradation and recycling of obsolete, damaged, or harmful macromolecular assemblies; however, excess autophagy has been implicated in type II cell death. Apoptosis is the canonical programmed cell death pathway. Autophagy and apoptosis have now been shown to be interconnected by several molecular nodes of crosstalk, enabling the coordinate regulation of degradation by these pathways. Normally, autophagy and apoptosis are both tumor suppressor pathways. Autophagy fulfils this role as it facilitates the degradation of oncogenic molecules, preventing development of cancers, while apoptosis prevents the survival of cancer cells. Consequently, defective or inadequate levels of either autophagy or apoptosis can lead to cancer. However, autophagy appears to have a dual role in cancer, as it has now been shown that autophagy also facilitates the survival of tumor cells in stress conditions such as hypoxic or low-nutrition environments. Here we review the multiple molecular mechanisms of coordination of autophagy and apoptosis and the role of the proteins involved in this crosstalk in cancer. A comprehensive understanding of the interconnectivity of autophagy and apoptosis is essential for the development of effective cancer therapeutics.


2009 ◽  
Vol 29 (6) ◽  
pp. 405-415 ◽  
Author(s):  
Ce-Belle Chen ◽  
Jowin K. W. Ng ◽  
Poh-Heok Choo ◽  
Wei Wu ◽  
Alan G. Porter

MST3 (mammalian sterile 20-like kinase 3) is a sterile 20 kinase reported to have a role in Fas-ligation- and staurosporine-induced cell death by unknown mechanism(s). We found that MST3-deficient cells are resistant to H2O2, which was reversed by reconstituting recombinant MST3. H2O2-induced JNK (c-Jun N-terminal kinase) activation was greatly enhanced in shMST3 cells (a cell line treated with short hairpin RNA against MST3). Suppression of JNK activity by the inhibitor SP600125 or by dominant-negative JNK2 re-sensitized cells to H2O2. Furthermore, c-Jun Ser-63 phosphorylation was augmented in shMST3 cells, whereas JunAA (dominant-negative c-Jun) reduced H2O2 resistance, implicating an AP-1 (activator protein 1) pathway in H2O2-induced survival signalling. Total cytoprotective HO-1 (haem oxygenase 1) expression, which was attenuated by JunAA, was induced up to 5-fold higher in shMST3 cells compared with controls. Zinc protoporphyrin IX, a potent inhibitor of HO reversed the H2O2-resistance of shMST3 cells. Our results reveal that H2O2-induced MST3-mediated cell death involves suppressing both a JNK survival pathway and up-regulation of HO-1.


Sign in / Sign up

Export Citation Format

Share Document