intestinal distension
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 0)

PLoS Biology ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. e3001169
Author(s):  
Chunlan Hong ◽  
Jonathan Lalsiamthara ◽  
Jie Ren ◽  
Yu Sang ◽  
Alejandro Aballay

The gut-neural axis plays a critical role in the control of several physiological processes, including the communication of signals from the microbiome to the nervous system, which affects learning, memory, and behavior. However, the pathways involved in gut-neural signaling of gut-governed behaviors remain unclear. We found that the intestinal distension caused by the bacterium Pseudomonas aeruginosa induces histone H4 Lys8 acetylation (H4K8ac) in the germline of Caenorhabditis elegans, which is required for both a bacterial aversion behavior and its transmission to the next generation. We show that induction of H4K8ac in the germline is essential for bacterial aversion and that a 14-3-3 chaperone protein family member, PAR-5, is required for H4K8ac. Our findings highlight a role for H4K8ac in the germline not only in the intergenerational transmission of pathogen avoidance but also in the transmission of pathogenic cues that travel through the gut-neural axis to control the aversive behavior.


2021 ◽  
Vol 6 (2) ◽  
pp. e645
Author(s):  
Nathalya Zeledón Corrales ◽  
José Antonio Serrano Suárez ◽  
Sebastián Fernández Agudelo

El síndrome de intestino irritable es una patología frecuente en la práctica clínica. Está caracterizado por dolor abdominal, alteración en el hábito intestinal, distensión abdominal y flatulencias. Los criterios Roma IV son una herramienta para ayudar al clínico a definir el diagnóstico y la necesidad de realizar pruebas en el paciente. No hay una causa especifica identificada, es conocido que existe una alteración en el eje bidireccional cerebro-intestino el cual está influenciado por múltiples factores. Existen 4 subtipos, síndrome de intestino irritable con constipación, con diarrea, mixto e inespecífico. De acuerdo con el subtipo se designa el mejor tratamiento. Existen terapias farmacológicas y no farmacológicas que permiten brindar al paciente el enfoque multidisciplinario que requiere esta patología debido a su heterogénesis.  


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1387
Author(s):  
Collen Musara ◽  
Elizabeth Bosede Aladejana ◽  
Silas Mufambi Mudyiwa

Citrus reticulata Blanco is a moderately-sized fruit tree widely used as herbal medicine worldwide. The nutritional composition, medicinal uses, phytochemistry and pharmacological properties of C. reticulata were critically reviewed in the current study. The literature linked to C. reticulata properties was obtained from multiple internet sources including Elsevier, Google Scholar, SciFinder, Web of Science, Pubmed, BMC, Science Direct, and Scopus. Ethnopharmacological research identified antioxidants such as vitamin C, carotenoids and phenolic compounds, also a source of sugars, organic acids, amino acids, pectins, minerals and volatile organic compounds as components of C. reticulata. As a medicinal plant, C. reticulata is used for the treatment of dyspepsia, gastro-intestinal distension, cough with profuse phlegm, hiccup and vomiting. The crude extracts of C. reticulata fruits have depicted anti-inflammatory, anticholesterolemic, analgesic, antiasthmatic, antiscorbutic, antiseptic, antitussive, carminative, expectorant, stomachic. With more people becoming nutrition-conscious, there has been an increase in the demand for the use of citrus fruits and their by-products as traditional medicines for conventional healthcare in developing countries.


2020 ◽  
Author(s):  
Chunlan Hong ◽  
Alejandro Aballay

AbstractThe gut-neural axis plays a critical role in the control of several physiological processes, including the communication of signals from the microbiome to the nervous system, which affects learning, memory, and behaviors. However, the pathways involved in gut-neural signaling of gut-governed behaviors remain unclear. We found that the intestinal distension caused by the bacterium Pseudomonas aeruginosa induces histone H4 Lys8 acetylation (H4K8ac) in the germline of Caenorhabditis elegans, which is required for both a bacterial aversion behavior and its transmission to the next generation. We show that induction of H4K8ac in the germline is essential for bacterial aversion and that a 14-3-3 chaperone protein family member, PAR-5, is required for H4K8ac. Our findings highlight a role for H4K8ac in the germline not only in the inheritance of pathogen avoidance but also in the transmission of pathogenic cues that travel through the gut-neural axis to control the aversive behavior.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Thorsten Book ◽  
Martha M. Kirstein ◽  
Andrea Schneider ◽  
Michael P. Manns ◽  
Torsten Voigtländer

2016 ◽  
Vol 23 (2) ◽  
pp. 111-127 ◽  
Author(s):  
James M Battisti ◽  
Lance A Watson ◽  
Myo T Naung ◽  
Adam M Drobish ◽  
Ekaterina Voronina ◽  
...  

The nematode Caenorhabditis elegans is well established as a system for characterization and discovery of molecular mechanisms mediating microbe-specific inducible innate immune responses to human pathogens. Coxiella burnetii is an obligate intracellular bacterium that causes a flu-like syndrome in humans (Q fever), as well as abortions in domesticated livestock, worldwide. Initially, when wild type C. elegans (N2 strain) was exposed to mCherry-expressing C. burnetii (CCB) a number of overt pathological manifestations resulted, including intestinal distension, deformed anal region and a decreased lifespan. However, nematodes fed autoclave-killed CCB did not exhibit these symptoms. Although vertebrates detect C. burnetii via TLRs, pathologies in tol-1(–) mutant nematodes were indistinguishable from N2, and indicate nematodes do not employ this orthologue for detection of C. burnetii. sek-1(–) MAP kinase mutant nematodes succumbed to infection faster, suggesting that this signaling pathway plays a role in immune activation, as previously shown for orthologues in vertebrates during a C. burnetii infection. C. elegans daf-2(–) mutants are hyper-immune and exhibited significantly reduced pathological consequences during challenge. Collectively, these results demonstrate the utility of C. elegans for studying the innate immune response against C. burnetii and could lead to discovery of novel methods for prevention and treatment of disease in humans and livestock.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Sajid Umar ◽  
Muhammad Younus ◽  
Muhammad Shahzad ◽  
Kiran Aqil ◽  
Rizwan Qayyum ◽  
...  

The study was conducted to investigate the effects of wheat based diet on the pathology of necrotic enteritis in turkeys. Turkeys were divided into four groups. Groups A and B were kept as noninoculated and fed normal commercial diet while groups C and D were challenged orally withC. perfringensand fed wheat based diet to promote the development of experimental disease. Infected turkeys showed clinical signs of depression, ruffled feathers, and dark yellowish faeces showing the most prominent disease signs in turkeys of group D with 30% mortality. Similarly, turkeys of group D showed more striking gross and histopathologic lesions as compared to turkeys of group C. The most severe gross lesions comprised intestinal distension, small necrotic spots and haemorrhages on intestine, fragile intestinal wall, and gas bubble formation in the small intestine. Histologically, inoculated turkeys showed patchy necrosis, desquamation of intestinal epithelium, and intense leukocyte infiltration in the intestine. Microscopic examination showed significant decrease in the height of intestinal villi of inoculated birds. Haematological studies showed significant influence of necrotic enteritis on the blood profile of turkeys in group D. The findings revealed that simultaneous feeding of wheat enhanced the pathology of necrotic enteritis in turkeys.


2015 ◽  
Vol 84 (2) ◽  
pp. 524-536 ◽  
Author(s):  
Corin V. White ◽  
Brian J. Darby ◽  
Robert J. Breeden ◽  
Michael A. Herman

Stenotrophomonas maltophiliais a ubiquitous bacterium and an emerging nosocomial pathogen. This bacterium is resistant to many antibiotics, associated with a number of infections, and a significant health risk, especially for immunocompromised patients. Given thatCaenorhabditis elegansshares many conserved genetic pathways and pathway components with higher organisms, the study of its interaction with bacterial pathogens has biomedical implications.S. maltophiliahas been isolated in association with nematodes from grassland soils, and it is likely thatC. elegansencounters this bacterium in nature. We found that a localS. maltophiliaisolate, JCMS, is more virulent than the otherS. maltophiliaisolates (R551-3 and K279a) tested. JCMS virulence correlates with intestinal distension and bacterial accumulation and requires the bacteria to be alive. Many of the conserved innate immune pathways that serve to protectC. elegansfrom various pathogenic bacteria also play a role in combatingS. maltophiliaJCMS. However,S. maltophiliaJCMS is virulent to normally pathogen-resistant DAF-2/16 insulin-like signaling pathway mutants. Furthermore, several insulin-like signaling effector genes were not significantly differentially expressed betweenS. maltophiliaJCMS and avirulent bacteria (Escherichia coliOP50). Taken together, these findings suggest thatS. maltophiliaJCMS evades the pathogen resistance conferred by the loss of DAF-2/16 pathway components. In summary, we have discovered a novel host-pathogen interaction betweenC. elegansandS. maltophiliaand established a new animal model with which to study the mode of action of this emerging nosocomial pathogen.


Sign in / Sign up

Export Citation Format

Share Document