scholarly journals A Cylindrical Crash Absorber with Discontinuous Protrusions and Its Manufacture Using a Successive Partial Rubber-Bulging Method

2021 ◽  
Vol 11 (22) ◽  
pp. 10892
Author(s):  
Di Liang ◽  
Wenhao Xu ◽  
Jieliang Feng ◽  
Wei Zhao ◽  
Naoki Kawada ◽  
...  

In an effort to improve impact energy-absorption characteristics, this study introduces a cylindrical crash absorber (CAP) with discontinuous protrusions and a continuous local-expansion plastic-forming method for its manufacture. The mechanical properties of the cylindrical energy-absorption structure were modified by installing multiple particle protrusions on the cylinder sidewall to reduce the initial pickup load and improve the impact energy-absorption performance. To facilitate manufacture of the proposed CAP, a cylindrical rubber piece was placed into a cylindrical tube and pressure was applied to the rubber from both ends of the tube. The CAP was formed by the bulging force of the rubber. The formability was verified by developing a successive local bulge-forming experimental device and comparing the manufactured CAP with the results of numerical simulations. Testing of quasi-static collapse conducted on a CAP manufactured using this device verified the effectiveness of the proposed CAP design and its plastic-forming method. It was determined that this design reduced the initial peak load, and the crash absorber could maintain stability over a long, continuous distance during crushing deformation.

2017 ◽  
Vol 865 ◽  
pp. 612-618 ◽  
Author(s):  
M. Malawat ◽  
Jos Istiyanto ◽  
D.A. Sumarsono

Crush initiators are the weakest points to reduce initial peak load force with significant energy absorption ability. The objective of this paper is to study the effects of square tube thickness and crush initiators position for impact energy absorber (IEA) performance on thin-walled square tubes. Two square tubes having thickness about 0.6 mm (specimen code A) and 1 mm (specimen Code C) were tested under dynamic load. The crushing initiator is designed around the shape of the tube wall and has eight holes with a fixed diameter of 6.5 mm. In the experiment, the crushing initiator was determined at 5 different locations on the specimen wall. These locations are 10 mm, 20 mm. 30 mm, 40 mm, and 50 mm measured from the initial collision position of the specimen tested. The impact load mass was about 80 kg and had a drop height of about 1.5 m. Using the simulation program of the LabVIEW Professional Development System 2011 and National Instrument (NI) 9234 software equipped with data acquisition hardware NI cDAQ-9174 the signal from the load cell was sent to a computer. By controlling the thickness of the thin-walled square tube, the peak loading force can be decreased by approximately 56.75% and energy absorption ability of IEA can be increased approximately to 11.83%. By using different thin-walled square tube can produce different best crush initiators position with the lowest peak load force.


2016 ◽  
Vol 838 ◽  
pp. 29-35
Author(s):  
Michał Landowski ◽  
Krystyna Imielińska

Flexural strength and low velocity impact properties were investigated in terms of possibile improvements due to epoxy matrix modification by SiO2 nanoparticles (1%, 2%, 3%, 5%, 7%wt.) in glass/epoxy laminates formed using hand lay-up method. The matrix resin was Hexion L285 (DGEBA) with Nanopox A410 - SiO2 (20 nm) nanoparticle suspension in the base epoxy resin (DGEBA) supplied by Evonic. Modification of epoxy matrix by variable concentrations of nanoSiO2 does not offer significant improvements in the flexural strength σg, Young’s modulus E and interlaminar shear strength for 1% 3% and 5% nanoSiO2 and for 7% a slight drop (up to ca. 15-20%) was found. Low energy (1J) impact resistance of nanocomposites represented by peak load in dynamic impact characteristics was not changed for nanocompoosites compared to the unmodified material. However at higher impact energy (3J) nanoparticles appear to slightly improve the impact energy absorption for 3% and 5%. The absence or minor improvements in the mechanical behaviour of nanocomposites is due to the failure mechanisms associated with hand layup fabrication technique: (i.e. rapid crack propagation across the extensive resin pockets and numerous pores and voids) which dominate the nanoparticle-dependent crack energy absorption mechanisms (microvoids formation and deformation).


2021 ◽  
Author(s):  
Yang Yang ◽  
Xilu Zhao ◽  
Ichiro Hagiwara

Abstract In the crash collision, the vehicle energy absorbers play an important role in the energy absorbed performance. Current vehicle energy absorbers have two defects during collision, such as only 70 % collapsed in its length and high initial peak load. It is because present energy absorbed column is the most primitive from the point of Origami structure. We developed the column so called Reversed Spiral Origami Structure; RSO which solves these 2 defects. However, for RSO, the manufacturing cost of hydroforming in the existing technology is too expensive to be applied in real vehicle structure. To address the problems, we have developed a new molding method called “Partial-heating torsion molding method”. And we have developed RTO (Reversed Torsion Origami Structure) by this new molding method at a very low cost. We show this RTO also solves the two defects of the present vehicle absorbers by not only simulation but also experiments. This structure is possible to replace conventional energy absorbers and it is expected to be widely used such as not only in automobile structures but also in building ones.


Author(s):  
Shuguang Yao ◽  
Zhixiang Li ◽  
Wen Ma ◽  
Ping Xu ◽  
Quanwei Che

Coupler rubber buffers are widely used in high-speed trains, to dissipate the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are pre-compressed and then installed into the frame body. This paper specifically focuses on the energy absorption characteristics of the rubber buffers. Firstly, quasi-static compression tests were carried out for one and three pairs of rubber sheets, and the relationship between the energy absorption responses, i.e. Eabn  =  n ×  Eab1, Edissn =  n ×  Ediss1, and Ean =  Ea1, was obtained. Next, a series of quasi-static tests were performed for one pair of rubber sheet to investigate the energy absorption performance with different compression ratios of the rubber buffers. Then, impact tests with five impact velocities were conducted, and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The results of the impact tests showed that with the increase of the impact velocity, the Eab, Ediss, and Ea of the rear buffer increased significantly, but the three responses of the front buffer did not increase much. Finally, the results of the impact tests and quasi-static tests were contrastively analyzed, which showed that with the increase of the stroke, the values of Eab, Ediss, and Ea increased. However, the increasing rates of the impact tests were higher than that of the quasi-static tests. The maximum value of Ea was 68.76% in the impact tests, which was relatively a high value for the vehicle coupler buffer. The energy capacity of the rear buffer for dynamic loading was determined as 22.98 kJ.


2020 ◽  
Vol 54 (28) ◽  
pp. 4387-4395
Author(s):  
Sanchi Arora ◽  
Abhijit Majumdar ◽  
Bhupendra Singh Butola

The beneficial effect of STF impregnation in enhancing the impact resistance of high-performance fabrics has been extensively reported in the literature. However, this research work reports that fabric structure has a decisive role in moderating the effectiveness of STF impregnation in terms of impact energy absorption. Plain woven fabrics having sett varying from 25 × 25 inch−1 to 55 × 55 inch−1 were impregnated with STF at two different padding pressures to obtain different add-ons. The impact energy absorption by STF impregnated loosely woven fabrics was found to be higher than that of their neat counterparts for both levels of add-on, while opposite trend was observed in case of tightly woven fabrics. Further, comparison of tightly woven plain, 2/2 twill, 3/1 twill and 2 × 2 matt fabrics revealed beneficial effect of STF impregnation, except for the plain woven fabric, establishing that there exists a fabric structure-STF impregnation interplay that tunes the impact resistance of woven fabrics.


2014 ◽  
Vol 67 (3) ◽  
Author(s):  
M. S. Othman ◽  
Z. Ahmad

This paper treats the crash analysis and energy absorption response of Rain Forest Vehicle (RFV) subjected to frontal impact scenario namely impacting rigid wall and column. Dynamic computer simulation techniques validated by experimental testing are used to carry out a crash analysis of such vehicle. The study aims at quantifying the energy absorption capability of frontal section of RFV under impact loading, for variations in the load transfer paths and geometry of the crashworthy components. It is evident that the proposed design of the RFV frontal section are desirable as primary impact energy mitigation due to its ability to withstand and absorb impact loads effectively. Furthermore, it is found that the impact energy transmitted to the survival room may feasibly be minimized in these two impact events. The primary outcome of this study is design recommendation for enhancing the level of safety of the off-road vehicle where impact loading is expected.   


2009 ◽  
Vol 76 (4) ◽  
Author(s):  
S. B. Bodlani ◽  
S. Chung Kim Yuen ◽  
G. N. Nurick

This two-part article reports the results of experimental and numerical works conducted on the energy absorption characteristics of thin-walled square tubes with multiple circular hole discontinuities. Part I presents the experimental tests in which dynamic and quasistatic axial crushings are performed. The mild steel tubes are 350 mm in length, 50 mm wide, and 1.5 mm thick. Circular hole discontinuities, 17 mm in diameter, are laterally drilled on two or all four opposing walls of the tube to form opposing hole pairs. The total number of holes varies from 2 to 10. The results indicate that the introduction of holes decreases the initial peak force but an increase in the number of holes beyond 2 holes per side does not further significantly decrease the initial peak force. The findings show that strategic positioning of holes triggers progressive collapse hence improving energy absorption. The results also indicate that the presence of holes may at times disrupt the formation of lobes thus compromising the energy absorption capacity of the tube. In Part II, the finite element package ABAQUS/EXPLICIT version 6.4–6 is used to model the dynamic axial crushing of the tubes and to investigate the action of the holes during dynamic loading at an impact velocity of 8 m/s.


2014 ◽  
Vol 69 (3) ◽  
Author(s):  
M. S. Othman ◽  
Z. Ahmad

This paper treats the crash analysis and energy absorption response of Rain Forest Vehicle (RFV) subjected to frontal impact scenario namely impacting rigid wall and column. Dynamic computer simulation techniques validated by experimental testing are used to carry out a crash analysis of such vehicle. The study aims at quantifying the energy absorption capability of frontal section of RFV under impact loading, for variations in the load transfer paths and geometry of the crashworthy components. It is evident that the proposed design of the RFV frontal section are desirable as primary impact energy mitigation due to its ability to withstand and absorb impact loads effectively. Furthermore, it is found that the impact energy transmitted to the survival room may feasibly be minimized in these two impact events. The primary outcome of this study is design recommendation for enhancing the level of safety of the off-road vehicle where impact loading is expected.   


Sign in / Sign up

Export Citation Format

Share Document