scholarly journals Optimization of Forging Process Parameters and Prediction Model of Residual Stress of Ti-6Al-4V Alloy

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiurong Fang ◽  
Liu Liu ◽  
Jia Lu ◽  
Yang Gao

Nonisothermal forging is an efficient plastic forming method for titanium alloys, but at the same time, it can produce large and uneven residual stress, which seriously affects the service life of components. In order to quantitatively analyze the influence of forging process parameters on the residual stress of Ti-6Al-4V alloy forgings, a numerical model was first established and optimized in combination with experiments. Then, the effects of deformation temperature, deformation degree, and deformation speed on the residual stress of forgings were analyzed by orthogonal test, and the optimal combination of forging process parameters was obtained. Finally, the multiple regression analysis was employed to propose multivariate regression models for the prediction of the average equivalent residual stress. Results show that the prediction model can be used for predicting the residual stress of Ti-6Al-4V alloy forgings with a higher reliability.

2007 ◽  
Vol 26-28 ◽  
pp. 367-371
Author(s):  
Hong Zhen Guo ◽  
Zhang Long Zhao ◽  
Bin Wang ◽  
Ze Kun Yao ◽  
Ying Ying Liu

In this paper the effect of isothermal forging process parameters on the microstructure and the mechanical properties of TA15 titanium alloy was researched. The results of the tests indicate that, in the range of temperature of 850 °C~980 °C and deformation degree of 20%~60%, with the increase of temperature or deformation, as the reinforcement of deformation recrystallization, the primary α-phase tends to the spherical shape and secondary α-phase transforms from the acicular shape to fine and spherical shape with disperse distribution, which enhance the tensile properties at room and high temperature. With the increment of forging times, the spheroidization of primary α-phase aggrandizes and secondary α-phase transforms from spherical and acicular shape to wide strip shape, which decrease the tensile properties at room and high temperature. The preferable isothermal forging process parameters are temperature of 980 °C, deformation degree of 60%, and few forging times.


2010 ◽  
Vol 97-101 ◽  
pp. 301-305
Author(s):  
Hong Zhen Guo ◽  
Xiao Yan Wang ◽  
Zhao Long Zhao ◽  
Tao Wang ◽  
Ze Kun Yao

In this paper the effect of isothermal forging process parameters on the microstructure and the mechanical properties of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy was researched. The results of the tests indicate that, in the temperature range of 755~905 °C and the deformation degree range of 20~60 %, with the increase of deforming temperature, the volume of primary α-phases decrease, but the globularization extent of the α-phases increases and partial secondary α-phases transform into equiaxed shape. At the temperature of 860 °C, the alloy exhibits excellent strength and plasticity, as the uniform and fine duplex microstructure formed after isothermal forging. When the deformation degree increased from 20% to 60%, primary and secondary α-phases were gradually broken and the recrystallization energy was continually accumulated, which ceaselessly strengthened the properties of the alloy. With the increase of forging times, the globularization extent of decreases, leaving the chain of α-phases, which damages the strength and plasticity of the alloy.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2542
Author(s):  
Karol Ulatowski ◽  
Radosław Jeżak ◽  
Paweł Sobieszuk

(1) The generation of nanobubbles by electrolysis is an interesting method of using electrical energy to form bubble nuclei, effectively creating a multiphase system. For every process, the effectiveness of nanobubble generation by electrolysis depends on various process parameters that impact should be determined. (2) In this work, the electrolytic generation of hydrogen and oxygen bubbles was performed in a self-built setup, in which a Nafion membrane separated two chambers. The generation of bubbles of both gases was investigated using Box–Behnken experimental design. Three independent variables were salt concentration, current density, and electrolysis time, while the dependent variables were Sauter diameters of generated bubbles. An ANOVA analysis and multivariate regression were carried out to propose a statistical and power model of nanobubble size as a process parameter function. (3) The generation of bubbles of hydrogen and oxygen by electrolysis showed that different factors or their combinations determine their size. The results presented in this work proved to be complementary to previous works reported in the literature. (4) The Sauter diameter of bubbles increases with salt concentration and stays constant with increasing current density in investigated range. The proposed correlations allow the Sauter diameters of nanobubbles generated during electrolysis to be predicted.


2008 ◽  
Vol 99 (9) ◽  
pp. 1841-1859 ◽  
Author(s):  
Lixing Zhu ◽  
Ruoqing Zhu ◽  
Song Song

2021 ◽  
Author(s):  
Cécile Gomez ◽  
Tiphaine Chevallier ◽  
Patricia Moulin ◽  
Bernard G. Barthès

<p><span>Mid-Infrared reflectance spectroscopy (MIRS, 4000 – 400 cm<sup>-1</sup>) is being considered to provide accurate estimations of soil inorganic carbon (SIC) contents. Usually, the prediction performances by MIRS are analyzed using figures of merit based on entire test datasets characterized by large SIC ranges, without paying attention to performances at sub-range scales. This work aims to <em>1)</em> evaluate the performances of MIR regression models for SIC prediction, for a large range of SIC test data (0-100 g/kg) and for several regular sub-ranges of SIC values (0-5, 5-10, 10-15 g/kg, etc.) and <em>2)</em> adapt the prediction model depending on sub-ranges of test samples, using the absorbance peak at 2510 cm<sup>-1</sup> for separating SIC-poor and SIC-rich test samples. This study used a Tunisian MIRS topsoil dataset including 96 soil samples, mostly rich in SIC, to calibrate and validate SIC prediction models; and a French MIRS topsoil dataset including 2178 soil samples, mostly poor in SIC, to test them. Two following regression models were used: a partial least squares regression (PLSR) using the entire spectra and a simple linear regression (SLR) using the height of the carbonate absorbance peak at 2150 cm<sup>-1</sup>.</span></p><p><span>First, our results showed that PLSR provided <em>1) </em>better performances than SLR on the Validation Tunisian dataset (R<sup>2</sup><sub>test</sub> of 0.99 vs. 0.86, respectively), but <em>2) </em>lower performances than SLR on the Test French dataset (R<sup>2</sup><sub>test</sub> of 0.70 vs. 0.91, respectively). Secondly, our results showed that on the Test French dataset, predicted SIC values were more accurate for SIC-poor samples (< 15 g/kg) with SLR (RMSE<sub>test</sub> from 1.5 to 7.1 g/kg, depending on the sub-range) than with PLSR prediction model (RMSE<sub>test </sub>from 7.3 to 14.8 g/kg, depending on the sub-range). Conversely, predicted SIC values were more accurate for carbonated samples (> 15 g/kg) with PLSR (RMSE<sub>test</sub> from 4.4 to 10.1 g/kg, depending on the sub-range) than with SLR prediction model (RMSE<sub>test</sub> from 6.8 to 14 g/kg, depending on the sub-range). Finally, our results showed that the absorbance peak at 2150 cm<sup>-1</sup> could be used before prediction to separate SIC-poor and SIC-rich test samples (452 and 1726 samples, respectevely). The SLR and PLSR regression methods applied to these SIC-poor and SIC-rich test samples, respectively, provided better prediction performances (<em>R²</em><sub><em>test </em></sub>of 0.95 and <em>RMSE</em><sub><em>test</em></sub> of 3.7 g/kg<sup></sup>). </span></p><p><span>Finally, this study demonstrated that the use of the spectral absorbance peak at 2150 cm<sup>-1</sup> provided useful information on Test samples and helped the selection of the optimal prediction model depending on SIC level, when using calibration and test sample sets with very different SIC distributions.</span></p>


Author(s):  
Paul D. Rosero-Montalvo ◽  
Jose Pijal-Rojas ◽  
Carlos Vasquez-Ayala ◽  
Edgar Maya ◽  
Carlos Pupiales ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 930 ◽  
Author(s):  
Martin Malý ◽  
Christian Höller ◽  
Mateusz Skalon ◽  
Benjamin Meier ◽  
Daniel Koutný ◽  
...  

The aim of this study is to observe the effect of process parameters on residual stresses and relative density of Ti6Al4V samples produced by Selective Laser Melting. The investigated parameters were hatch laser power, hatch laser velocity, border laser velocity, high-temperature preheating and time delay. Residual stresses were evaluated by the bridge curvature method and relative density by the optical method. The effect of the observed process parameters was estimated by the design of experiment and surface response methods. It was found that for an effective residual stress reduction, the high preheating temperature was the most significant parameter. High preheating temperature also increased the relative density but caused changes in the chemical composition of Ti6Al4V unmelted powder. Chemical analysis proved that after one build job with high preheating temperature, oxygen and hydrogen content exceeded the ASTM B348 limits for Grade 5 titanium.


2021 ◽  
Author(s):  
C Longchamps ◽  
S Ducarroz ◽  
L Crouzet ◽  
N. Vignier ◽  
L. Pourtau ◽  
...  

AbstractCOVID-19 vaccine hesitancy is frequent and can constitute a barrier to the dissemination of vaccines once they are available. Unequal access to vaccines may also contribute to socioeconomic inequalities with regard to COVID-19. We studied vaccine hesitancy among persons living in homeless shelters in France between May and June 2020 (n=235). Overall, 40.9% of study participants reported vaccine hesitancy, which is comparable to general population trends in France. In multivariate regression models, factors associated with vaccine hesitancy are: being a woman (OR=2.55; 95% CI 1.40-4.74), living with a partner (OR=2.48, 95% CI 1.17-5.41), no legal residence in France (OR=0.51, 95% CI 0.27-0.92), and health literacy (OR=0.38, 95% CI 0.21, 0.68). Our results suggest that trends in vaccine hesitancy and associated factors are similar among homeless persons as in the general population. Dissemination of information on vaccine risks and benefits needs to be adapted to persons who experience severe disadvantage.


1999 ◽  
Vol 51 (4) ◽  
pp. 547-572 ◽  
Author(s):  
Andrew Reynolds

This article reports the results of a survey of women in legislatures and executives around the world as they were constituted in 1998 (N = 180). The chief hypotheses regarding the factors hindering or facilitating women's access to political representation were tested by multivariate regression models. The regression models juxtaposed a cocktail of institutional, political, cultural, and socioeconomic variables with the following dependent variables: (1) the percentage of MPs who are women and (2) the percentage of cabinet ministers who are women.A number, although not all, of the cited hypotheses were statistically confirmed and more finely quantified. The socioeconomic development of women in society has an effect on the number of women in parliament but not in the cabinet. A country's length of experience with multipartyism and women's enfranchisement correlates with both the legislative and the executive percentage. Certain electoral systems are more women friendly than others. The ideological nature of the party system affects the number of women elected and chosen for cabinet posts. And last, the state's dominant religion, taken as a proxy for culture, also statistically relates to the number of women who will make it to high political office. However, other long-held hypotheses were not proved. The degree of democracy is not a good indicator of the percentage of women who will make it into the legislature or the cabinet, nor is the dichotomy between a presidential or parliamentary system.


Sign in / Sign up

Export Citation Format

Share Document