scholarly journals A Tunable Metamaterial Joint for Mechanical Shock Applications Inspired by Carbon Nanotubes

2021 ◽  
Vol 11 (23) ◽  
pp. 11139
Author(s):  
Georgios I. Giannopoulos ◽  
Stylianos K. Georgantzinos

The significant developments of additive manufacturing and especially 3D-printing technologies have broadened the application field of metamaterials. The present study aims at establishing the main design parameters of a novel 3D-printed polymer-based joint. The proposed joint can efficiently absorb impact energy, relieving the material components from extensive plastic deformations. The design of the machine element is inspired by the molecular structure of carbon nanotubes and appropriately adjusted in such a way that it has the ability to partially transform translational motion to rotational motion and, thus, provide axial structural protection from compressive shocks. The utilized material is a photosensitive resin that is typically utilized in 3D manufacturing processes. Experiments are utilized to characterize the mechanical performance of the raw material as well as the static compressive behavior of the joint. Finally, finite element simulations are performed to test the developed design under impact loadings characterized by different frequencies. The damping capabilities of the metamaterial-based joint are revealed and discussed.

2019 ◽  
Vol 809 ◽  
pp. 65-70
Author(s):  
Günther Höfler ◽  
Krishnan Jayaraman ◽  
Richard Lin

Rotational moulding (RM) of plastics is predominantly used to produce hollow, singlepiece products. Polyethylene (PE) in its various forms, is the most commonly used material for this process. Researchers have been conducting numerous experiments trying to incorporate reinforcements attempting to improve the mechanical performance of RM products and overcome the material limitations posed by design parameters. One of the most common problems with reinforcement in RM is the migration of the filler towards the inside of the mould and agglomerations. In order to find a competitive material which is desirable by industry, RM experiments were conducted with various composite reinforcements; high density polyethylene (HDPE), numerous types of glass fibres (GF), carbon fibres (CF) and carbon nanotubes (CNT). In particular, the influence of low weight fractions of reinforcement on the mechanical performance, tensile, flexural and impact properties of HDPE were investigated.


2011 ◽  
Vol 26 (10) ◽  
pp. 1020-1024
Author(s):  
Ying BAO ◽  
Chun-Xiao WANG ◽  
Liang ZHAN ◽  
Yan-Li WANG ◽  
Guang-Zhi YANG ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 125
Author(s):  
Martino Colonna ◽  
Benno Zingerle ◽  
Maria Federica Parisi ◽  
Claudio Gioia ◽  
Alessandro Speranzoni ◽  
...  

The optimization of sport equipment parts requires considerable time and high costs due to the high complexity of the development process. For this reason, we have developed a novel approach to decrease the cost and time for the optimization of the design, which consists of producing a first prototype by 3D printing, applying the forces that normally acts during the sport activity using a test bench, and then measuring the local deformations using 3D digital image correlation (DIC). The design parameters are then modified by topological optimization and then DIC is performed again on the new 3D-printed modified part. The DIC analysis of 3D-printed parts has shown a good agreement with that of the injection-molded ones. The deformation measured with DIC are also well correlated with those provided by finite element method (FEM) analysis, and therefore DIC analysis proves to be a powerful tool to validate FEM models.


2021 ◽  
Vol 13 (14) ◽  
pp. 7572
Author(s):  
Gigliola D’Angelo ◽  
Marina Fumo ◽  
Mercedes del Rio Merino ◽  
Ilaria Capasso ◽  
Assunta Campanile ◽  
...  

Demolition activity plays an important role in the total energy consumption of the construction industry in the European Union. The indiscriminate use of non-renewable raw materials, energy consumption, and unsustainable design has led to a redefinition of the criteria to ensure environmental protection. This article introduces an experimental plan that determines the viability of a new type of construction material, obtained from crushed brick waste, to be introduced into the construction market. The potential of crushed brick waste as a raw material in the production of building precast products, obtained by curing a geopolymeric blend at 60 °C for 3 days, has been exploited. Geopolymers represent an important alternative in reducing emissions and energy consumption, whilst, at the same time, achieving a considerable mechanical performance. The results obtained from this study show that the geopolymers produced from crushed brick were characterized by good properties in terms of open porosity, water absorption, mechanical strength, and surface resistance values when compared to building materials produced using traditional technologies.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1949
Author(s):  
Ling Ding ◽  
Wei Lu ◽  
Jiaqi Zhang ◽  
Chuncheng Yang ◽  
Guofeng Wu

Literature has reported the successful use of 3D printed polyetheretherketone (PEEK) to fabricate human body implants and oral prostheses. However, the current 3D printed PEEK (brown color) cannot mimic the vivid color of oral tissues and thus cannot meet the esthetical need for dental application. Therefore, titanium dioxide (TiO2) and ferric oxide (Fe2O3) were incorporated into PEEK to prepare a series of tooth-color and gingival-color PEEK composites in this study. Through color measurements and mechanical tests, the color value and mechanical performance of the 3D printed PEEK composites were evaluated. In addition, duotone PEEK specimens were printed by a double nozzle with an interface between tooth-color and gingival-color parts. The mechanical performance of duotone PEEK with two different interfaces (horizontal and vertical) was investigated. With the addition of TiO2 and Fe2O3, the colors of 3D printed PEEK composites become closer to that of dental shade guides. 3D printed PEEK composites generally demonstrated superior tensile and flexural properties and hence have great potential in the dental application. In addition, duotone 3D printed PEEK with a horizontal interfacial orientation presented better mechanical performance than that with a vertical one.


Author(s):  
Pushkraj Tumne ◽  
Vikram Venkatadri ◽  
Santosh Kudtarkar ◽  
Michael Delaus ◽  
Daryl Santos ◽  
...  

Today’s consumer market demands electronics that are smaller, faster and cheaper. To cater to these demands, novel materials, new designs, and new packaging technologies are introduced frequently. Wafer Level Chip Scale Package (WLCSP) is one of the emerging package technologies that have the key advantages of reduced cost and smaller footprint. The portable consumer electronics are frequently dropped; hence the emphasis of reliability is shifting towards study of effects of mechanical shock loading increasingly. Mechanical loading typically induces brittle fractures (also known as intermetallic failures) between the solder bumps and bond pads at the silicon die side. This type of failure mechanism is typically characterized by the board level drop test. WLCSP is a variant of the flip-chip interconnection technique. In WLCSPs, the active side of the die is inverted and connected to the PCB by solder balls. The size of these solder balls is typically large enough (300μm pre-reflow for 0.5mm pitch and 250μm pre-reflow for 0.4mm pitch) to avoid use of underfill that is required for the flip-chip interconnects. Several variations are incorporated in the package design parameters to meet the performance, reliability, and footprint requirements of the package assembly. The design parameters investigated in this effort are solder ball compositions with different Silver (Ag) content, backside lamination with different thickness, WLCSP type –Direct and Re-Distribution Layer (RDL), bond pad thickness, and sputtered versus electroplated Under Bump Metallurgy (UBM) deposition methods for 8×8, 9×9, and 10×10 array sizes. The test vehicles built using these design parameters were drop tested using JEDEC recommended test boards and conditions as per JESD22-B11. Cross sectional analysis was used to identify, confirm, and classify the intermetallic, and bulk solder failures. The objective of this research was to quantify the effects and interactions of WLCSP design parameters through drop test. The drop test data was collected and treated as a right censored data. Further, it was analyzed by fitting empirical distributions using the grouped and un-grouped data approach. Data analysis showed that design parameters had a significant effect on the drop performance and played a vital role in influencing the package reliability.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Hongkun He ◽  
Chao Gao

We report a facile approach to prepare Fe3O4/Pt nanoparticles decorated carbon nanotubes (CNTs). The superparamagnetic Fe3O4nanoparticles with average size of4∼5 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl3. The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe3O4nanopartilces and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanopaticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe3O4/Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.


2012 ◽  
Vol 79 ◽  
pp. 41-46 ◽  
Author(s):  
Fabia Galantini ◽  
Sabrina Bianchi ◽  
Valter Castelvetro ◽  
Irene Anguillesi ◽  
Giuseppe Gallone

Among the broad class of electro-active polymers, dielectric elastomer actuators represent a rapidly growing technology for electromechanical transduction. In order to further develop this applied science, the high driving voltages currently needed must be reduced. For this purpose, one of the most promising and adopted approach is to increase the dielectric constant while maintaining both low dielectric losses and high mechanical compliance. In this work, a dielectric elastomer was prepared by dispersing functionalised carbon nanotubes into a polyurethane matrix and the effects of filler dispersion into the matrix were studied in terms of dielectric, mechanical and electro-mechanical performance. An interesting increment of the dielectric constant was observed throughout the collected spectrum while the loss factor remained almost unchanged with respect to the simple matrix, indicating that conductive percolation paths did not arise in such a system. Consequences of the chemical functionalisation of carbon nanotubes with respect to the use of unmodified filler were also studied and discussed along with rising benefits and drawbacks for the whole composite material.


Sign in / Sign up

Export Citation Format

Share Document