scholarly journals Comparison of the Variability of Small Extracellular Vesicles Derived from Human Liver Cancer Tissues and Cultured from the Tissue Explants Based on a Simple Enrichment Method

Author(s):  
Jie Chen ◽  
Zhigang Jiao ◽  
Jianwen Mo ◽  
Defa Huang ◽  
Zhengzhe Li ◽  
...  

AbstractA potential use of small extracellular vesicles (sEVs) for diagnostic and therapeutic purposes has recently generated a great interest. sEVs, when purified directly from various tissues with proper procedures, can reflect the physiological and pathological state of the organism. However, the quality of sEV is affected by many factors during isolation, including separation of sEV from cell and tissues debris, the use of enzymes for tissue digestion, and the storage state of tissues. In the present study, we established an assay for the isolation and purification of liver cancer tissues-derived sEVs (tdsEVs) and cultured explants-derived sEVs (cedsEVs) by comparing the quality of sEVs derived from different concentration of digestion enzyme and incubation time. The nano-flow cytometry (NanoFCM) showed that the isolated tdsEVs by our method are purer than those obtained from differential ultracentrifugation. Our study thus establishes a simple and effective approach for isolation of high-quality sEVs that can be used for analysis of their constituents. Graphical abstract

2021 ◽  
Author(s):  
Jie Chen ◽  
Zhigang Jiao ◽  
Jianwen Mo ◽  
Defa Huang ◽  
Zhengzhe Li ◽  
...  

Abstract A potential of using small extracellular vesicle (sEV) for diagnostic and therapeutic purposes has attracted great interest. Some sEVs, directly derived from various tissues, can reflect the physiological and pathological state of the organism. Currently, there are two sources for obtaining tissue-derived sEV: the interstitial space of tissues and cultivation of tissue explants. The former was obtained from tissues that were digested with enzymes and the latter was released by tissue explants. In the present study, we established a new method for the isolation and purification of sEVs from the interstitial space of human liver cancer tissue. Tissues-derived sEVs (TdsEVs) isolated by this method and cultured explants-derived sEVs (cedsEVs) were both characterized by nano-flow cytometry (NanoFCM) for concentration, size distribution and purity. These vesicles were identified and compared by transmission electron microscopy and western blot. TdsEVs have a larger particle size, higher particle concentration and purity than cedsEVs. This study establishes a simple sEV isolation and purification protocol and provides a basis for selection and reference for researches of tdsEVs and cedsEVs.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Maria Concetta Cufaro ◽  
Damiana Pieragostino ◽  
Paola Lanuti ◽  
Claudia Rossi ◽  
Ilaria Cicalini ◽  
...  

Extracellular Vesicles (EVs) are small membrane-enclosed particles released by cells and able to vehiculate information between them. The term EVs categorizes many and different vesicles based on their biogenesis and release pathway, such as exosomes (Exo), ectosomes, or shedding microvesicles (SMVs), apoptotic blebs (ABs), and other EVs subsets, generating a heterogeneous group of components able to redistribute their cargo into the entire organism. Moreover EVs are becoming increasingly important in monitoring cancer progression and therapy, since they are able to carry specific disease biomarkers such as Glypican-1, colon cancer-associated transcript 2, CD63, CD24, and many others. The importance of their biological role together with their heterogeneity prompted researchers to adopt and standardize purification methods able to isolate EVs for characterizing their cargo. In this way, mass spectrometry (MS)-based proteomics approaches are emerging as promising tool for the identification and quantification of EVs protein cargoes, but this technique resulted to be deeply influenced by the low quality of the isolation techniques. This review presents the state-of-the-art of EVs isolation, purification, and characterization for omics studies, with a particular focus to their potential use in monitoring cancer progression and therapy.


Oncotarget ◽  
2017 ◽  
Vol 8 (47) ◽  
pp. 82920-82939 ◽  
Author(s):  
Martina Berardocco ◽  
Annalisa Radeghieri ◽  
Sara Busatto ◽  
Marialucia Gallorini ◽  
Chiara Raggi ◽  
...  

2020 ◽  
Vol 25 (42) ◽  
pp. 4464-4485 ◽  
Author(s):  
Katarzyna Kluszczyńska ◽  
Liliana Czernek ◽  
Wojciech Cypryk ◽  
Łukasz Pęczek ◽  
Markus Düchler

Background: Exosomes open exciting new opportunities for advanced drug transport and targeted release. Furthermore, exosomes may be used for vaccination, immunosuppression or wound healing. To fully utilize their potential as drug carriers or immune-modulatory agents, the optimal purity of exosome preparations is of crucial importance. Methods: Articles describing the isolation and purification of exosomes were retrieved from the PubMed database. Results: Exosomes are often separated from biological fluids containing high concentrations of proteins, lipids and other molecules that keep vesicle purification challenging. A great number of purification protocols have been published, however, their outcome is difficult to compare because the assessment of purity has not been standardized. In this review, we first give an overview of the generation and composition of exosomes, as well as their multifaceted biological functions that stimulated various medical applications. Finally, we describe various methods that have been used to purify small vesicles and to assess the purity of exosome preparations and critically compare the quality of these evaluation protocols. Conclusion: Combinations of various techniques have to be applied to reach the required purity and quality control of exosome preparations.


2021 ◽  
Author(s):  
Novi Angeline ◽  
Sung-Sik Choo ◽  
Cheol-Hwi Kim ◽  
Suk Ho Bhang ◽  
Tae-Hyung Kim

2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Jia Jia ◽  
Xigang Kang ◽  
Yanfang Liu ◽  
Jianwei Zhang

Abstract Evodiamine is an active alkaloid member found in Traditional Chinese Herb (TCH) Evodia rutaecarpa. It has been reported to exhibit remarkable biological and medicinal activities including anticancer and anti-inflammatory. This study was designed to investigate the anticancer effects of evodiamine against human liver cancer and evaluate its effects on cell migration, cell invasion, cellular apoptosis and PI3K/AKT pathway. The results showed that evodiamine exhibits potent antiproliferative effects against two human liver cancer cell lines (HepG2 and PLHC-1) with an IC50 of 20 µM. Nonetheless, the cytotoxic effects of evodiamine were comparatively low against the normal cells as evident from the IC50 of 100 μM. The growth inhibitory effects of evodiamine were found to be due to the induction of apoptosis as revealed by the DAPI, AO/EB and annexin V/PI staining assays. The induction of apoptosis was also associated with upregulation of Bax and downregulation of Bcl-2 expression in a concentration dependent manner. The wound healing and transwell assay revealed that evodiamine caused a significant decline in the migration and invasion of the HepG2 and PLHC-1 cells. Investigation of the effects of evodiamine on the PI3K/AKT signalling revealed that evodiamine inhibited the phosphorylation of PI3K and AKT proteins. Taken together, the results showed that evodiamine inhibits the growth of human liver cancer via induction of apoptosis and deactivation of PI3K/AKT pathway. The results point towards the therapeutic potential of evodiamine in the treatment of liver cancer.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4593
Author(s):  
Deepthi Venkatachalapathy ◽  
Chandan Shivamallu ◽  
Shashanka Prasad ◽  
Gopenath Thangaraj Saradha ◽  
Parthiban Rudrapathy ◽  
...  

The edible parts of the plants Camellia sinensis, Vitis vinifera and Withania somnifera were extensively used in ancient practices such as Ayurveda, owing to their potent biomedical significance. They are very rich in secondary metabolites such as polyphenols, which are very good antioxidants and exhibit anti-carcinogenic properties. This study aims to evaluate the anti-cancerous properties of these plant crude extracts on human liver cancer HepG2 cells. The leaves of Camellia sinensis, Withania somnifera and the seeds of Vitis vinifera were collected and methanolic extracts were prepared. Then, these extracts were subjected to DPPH, α- amylase assays to determine the antioxidant properties. A MTT assay was performed to investigate the viability of the extracts of HepG2 cells, and the mode of cell death was detected by Ao/EtBr staining and flow cytometry with PI Annexin- V FITC dual staining. Then, the protein expression of BAX and BCl2 was studied using fluorescent dye to determine the regulation of the BAX and BCl2 genes. We observed that all the three extracts showed the presence of bioactive compounds such as polyphenols or phytochemicals. The W. somnifera bioactive compounds were found to have the highest anti-proliferative activity on human liver cancer cells.


2020 ◽  
Vol 21 (15) ◽  
pp. 5432 ◽  
Author(s):  
Stefano Burgio ◽  
Leila Noori ◽  
Antonella Marino Gammazza ◽  
Claudia Campanella ◽  
Mariantonia Logozzi ◽  
...  

Research for the most selective drug delivery to tumors represents a fascinating key target in science. Alongside the artificial delivery systems identified in the last decades (e.g., liposomes), a family of natural extracellular vesicles (EVs) has gained increasing focus for their potential use in delivering anticancer compounds. EVs are released by all cell types to mediate cell-to-cell communication both at the paracrine and the systemic levels, suggesting a role for them as an ideal nano-delivery system. Malignant pleural mesothelioma (MPM) stands out among currently untreatable tumors, also due to the difficulties in achieving an early diagnosis. Thus, early diagnosis and treatment of MPM are both unmet clinical needs. This review looks at indirect and direct evidence that EVs may represent both a new tool for allowing an early diagnosis of MPM and a potential new delivery system for more efficient therapeutic strategies. Since MPM is a relatively rare malignant tumor and preclinical MPM models developed to date are very few and not reliable, this review will report data obtained in other tumor types, suggesting the potential use of EVs in mesothelioma patients as well.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 889
Author(s):  
Pooja Lahiri ◽  
Suranjana Mukherjee ◽  
Biswajoy Ghosh ◽  
Debnath Das ◽  
Basudev Lahiri ◽  
...  

The choice of tissue fixation is critical for preserving the morphology and biochemical information of tissues. Fragile oral tissues with lower tensile strength are challenging to process for histological applications as they are prone to processing damage, such as tissue tear, wrinkling, and tissue fall-off from slides. This leads to loss of morphological information and unnecessary delay in experimentation. In this study, we have characterized the new PAXgene tissue fixation system on oral buccal mucosal tissue of cancerous and normal pathology for routine histological and immunohistochemical applications. We aimed to minimize the processing damage of tissues and improve the quality of histological experiments. We also examined the preservation of biomolecules by PAXgene fixation using FTIR microspectroscopy. Our results demonstrate that the PAXgene-fixed tissues showed significantly less tissue fall-off from slides. Hematoxylin and Eosin staining showed comparable morphology between formalin-fixed and PAXgene-fixed tissues. Good quality and slightly superior immunostaining for cancer-associated proteins p53 and CK5/6 were observed in PAXgene-fixed tissues without antigen retrieval than formalin-fixed tissues. Further, FTIR measurements revealed superior preservation of glycogen, fatty acids, and amide III protein secondary structures in PAXgene-fixed tissues. Overall, we present the first comprehensive evaluation of the PAXgene tissue fixation system in oral tissues. This study concludes that the PAXgene tissue fixation system can be applied to oral tissues to perform diagnostic molecular pathology experiments without compromising the quality of the morphology or biochemistry of biomolecules.


Sign in / Sign up

Export Citation Format

Share Document