altered expression pattern
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 3)

H-INDEX

17
(FIVE YEARS 0)

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jue Xu ◽  
Meiling Chen ◽  
Yanan Yan ◽  
Qiaoxue Zhao ◽  
Meiying Shao ◽  
...  

AbstractThe first branchial arch (BA1), which is derived from cranial neural crest (CNC) cells, gives rise to various orofacial tissues. Cre mice are widely used for the determination of CNC and exploration of gene functions in orofacial development. However, there is a lack of Cre mice specifically marked BA1’s cells. Pax2-Cre allele was previously generated and has been widely used in the field of inner ear development. Here, by compounding Pax2-Cre and R26R-mTmG mice, we found a specific expression pattern of Pax2+ cells that marked BA1’s mesenchymal cells and the BA1-derivatives. Compared to Pax2-Cre; R26R-mTmG allele, GFP+ cells were abundantly found both in BA1 and second branchial arch in Wnt1-Cre;R26R-mTmG mice. As BMP4 signaling is required for orofacial development, we over-activated Bmp4 by using Pax2-Cre; pMes-BMP4 strain. Interestingly, our results showed bilateral hyperplasia between the upper and lower teeth. We also compare the phenotypes of Wnt1-Cre; pMes-BMP4 and Pax2-Cre; pMes-BMP4 strains and found severe deformation of molar buds, palate, and maxilla-mandibular bony structures in Wnt1-Cre; pMes-BMP4 mice; however, the morphology of these orofacial organs were comparable between controls and Pax2-Cre; pMes-BMP4 mice except for bilateral hyperplastic tissues. We further explore the properties of the hyperplastic tissue and found it is not derived from Runx2+ cells but expresses Msx1, and probably caused by abnormal cell proliferation and altered expression pattern of p-Smad1/5/8. In sum, our findings suggest altering BMP4 signaling in BA1-specific cell lineage may lead to unique phenotypes in orofacial regions, further hinting that Pax2-Cre mice could be a new model for genetic manipulation of BA1-derived organogenesis in the orofacial region.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Fereshteh Esfandiari ◽  
Fereshteh Chitsazian ◽  
Masoumeh Golestan Jahromi ◽  
Raha Favaedi ◽  
Masood Bazrgar ◽  
...  

AbstractEndometriosis is major gynecological disease that affects over 10% of women worldwide and 30%-50% of these women have pelvic pain, abnormal uterine bleeding and infertility. The cause of endometriosis is unknown and there is no definite cure mainly because of our limited knowledge about its pathophysiology at the cellular and molecular levels. Therefore, demystifying the molecular mechanisms that underlie endometriosis is essential to develop advanced therapies for this disease. In this regard, HOX genes are remarkable because of their critical role in endometrial development and receptivity during implantation, which is attributed to their ability to mediate some of the sex steroid functions during the reproductive period. Access to the expression profiles of these genes would provide the necessary information to uncover new genes for endometriosis and assist with disease diagnosis and treatment. In this study we demonstrate an altered expression pattern for the HOX clusters (A-D) and their cofactors in both eutopic and ectopic conditions compared to control tissue biopsies. Remarkably, most of the intensive changes occurred in eutopic samples from endometriosis patients compared to control tissue biopsies. Pathway analysis revealed the involvement of differentially expressed genes in cancer that correlate with an association between endometriosis and cancer. Our results suggest critical roles for the HOX cluster and their cofactors in endometriosis pathophysiology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luca Bosa ◽  
Vritika Batura ◽  
Davide Colavito ◽  
Karoline Fiedler ◽  
Paola Gaio ◽  
...  

AbstractCARMIL2 is required for CD28-mediated co-stimulation of NF-κB signaling in T cells and its deficiency has been associated with primary immunodeficiency and, recently, very early onset inflammatory bowel disease (IBD). Here we describe the identification of novel biallelic CARMIL2 variants in three patients presenting with pediatric-onset IBD and in one with autoimmune polyendocrine syndrome (APS). None manifested overt clinical signs of immunodeficiency before their diagnosis. The first patient presented with very early onset IBD. His brother was found homozygous for the same CARMIL2 null variant and diagnosed with APS. Two other IBD patients were found homozygous for a nonsense and a missense CARMIL2 variant, respectively, and they both experienced a complicated postoperative course marked by severe infections. Immunostaining of bowel biopsies showed reduced CARMIL2 expression in all the three patients with IBD. Western blot and immunofluorescence of transfected cells revealed an altered expression pattern of the missense variant. Our work expands the genotypic and phenotypic spectrum of CARMIL2 deficiency, which can present with either IBD or APS, aside from classic immunodeficiency manifestations. CARMIL2 should be included in the diagnostic work-up of patients with suspected monogenic IBD.


2017 ◽  
Vol 114 (10) ◽  
pp. 2669-2674 ◽  
Author(s):  
Franziska Wielaender ◽  
Riika Sarviaho ◽  
Fiona James ◽  
Marjo K. Hytönen ◽  
Miguel A. Cortez ◽  
...  

The clinical and electroencephalographic features of a canine generalized myoclonic epilepsy with photosensitivity and onset in young Rhodesian Ridgeback dogs (6 wk to 18 mo) are described. A fully penetrant recessive 4-bp deletion was identified in the DIRAS family GTPase 1 (DIRAS1) gene with an altered expression pattern of DIRAS1 protein in the affected brain. This neuronalDIRAS1gene with a proposed role in cholinergic transmission provides not only a candidate for human myoclonic epilepsy but also insights into the disease etiology, while establishing a spontaneous model for future intervention studies and functional characterization.


2016 ◽  
Vol 58 (7) ◽  
pp. 1726-1729 ◽  
Author(s):  
Matus Coma ◽  
Elena Tothova ◽  
Tomas Guman ◽  
Martina Hajikova ◽  
Maria Giertlova ◽  
...  

mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Alicia Sánchez-Gorostiaga ◽  
Pilar Palacios ◽  
Rocío Martínez-Arteaga ◽  
Manuel Sánchez ◽  
Mercedes Casanova ◽  
...  

ABSTRACTWhen deprived of FtsZ,Escherichia colicells (VIP205) grown in liquid form long nonseptated filaments due to their inability to assemble an FtsZ ring and their failure to recruit subsequent divisome components. These filaments fail to produce colonies on solid medium, in which synthesis of FtsZ is induced, upon being diluted by a factor greater than 4. However, once the initial FtsZ levels are recovered in liquid culture, they resume division, and their plating efficiency returns to normal. The potential septation sites generated in the FtsZ-deprived filaments are not annihilated, and once sufficient FtsZ is accumulated, they all become active and divide to produce cells of normal length. FtsZ-deprived cells accumulate defects in their physiology, including an abnormally high number of unsegregated nucleoids that may result from the misplacement of FtsK. Their membrane integrity becomes compromised and the amount of membrane proteins, such as FtsK and ZipA, increases. FtsZ-deprived cells also show an altered expression pattern, namely, transcription of several genes responding to DNA damage increases, whereas transcription of some ribosomal or global transcriptional regulators decreases. We propose that the changes caused by the depletion of FtsZ, besides stopping division, weaken the cell, diminishing its resiliency to minor challenges, such as dilution stress.IMPORTANCEOur results suggest a role for FtsZ, in addition to its already known effect in the constriction ofE. coli, in protecting the nondividing cells against minor stress. This protection can even be exerted when an inactive FtsZ is produced, but it is lost when the protein is altogether absent. These results have implications in fields like synthetic biology or antimicrobial discovery. The construction of synthetic divisomes in the test tube may need to preserve unsuspected roles, such as this newly found FtsZ property, to guarantee the stability of artificial containers. Whereas the effects on viability caused by inhibiting the activity of FtsZ may be partly overcome by filamentation, the absence of FtsZ is not tolerated byE. coli, an observation that may help in the design of effective antimicrobial compounds.


2016 ◽  
Vol 19 (11) ◽  
pp. pyw061 ◽  
Author(s):  
SL Christiansen ◽  
EV Bouzinova ◽  
J Fahrenkrug ◽  
O Wiborg

Oncotarget ◽  
2016 ◽  
Vol 7 (24) ◽  
pp. 36366-36381 ◽  
Author(s):  
Ikhlak Ahmed ◽  
Thasni Karedath ◽  
Simeon S. Andrews ◽  
Iman K. Al-Azwani ◽  
Yasmin Ali Mohamoud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document