site network
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Mohammad Shariful Islam

Abstract: A high-performance network is a necessary component of any company's IT infrastructure. All operations, including internal and external communication across different corporate sites, as well as communication with clients and partners, should operate smoothly to enable smooth business activities. Failures and malfunctions in operational procedures can easily result in lost time and money. In order to maintain track of the availability, performance, and bandwidth utilization in an IT network, network monitoring software that continuously monitors operations in the network, does analysis, and warns IT workers as soon as an error happens or critical values are surpassed is highly recommended. If the administrator is not on site, network monitoring allows him or her to intervene swiftly, even if he or she is not there. Of course, each firm has unique requirements for a network monitoring solution, and with so many tools and solutions on the market, careful selection of an appropriate solution is essential. This paper discusses the different alternatives that a network solution can provide provided the appropriate criteria are taken into account during the decision-making process. Keywords: Network, Network Monitoring Tools, IT infrastructure, Open Source


2021 ◽  
Vol 18 (15) ◽  
pp. 4549-4570
Author(s):  
Zhaohui Chen ◽  
Parvadha Suntharalingam ◽  
Andrew J. Watson ◽  
Ute Schuster ◽  
Jiang Zhu ◽  
...  

Abstract. We present new estimates of the regional North Atlantic (15–80∘ N) CO2 flux for the 2000–2017 period using atmospheric CO2 measurements from the NOAA long-term surface site network in combination with an atmospheric carbon cycle data assimilation system (GEOS-Chem–LETKF, Local Ensemble Transform Kalman Filter). We assess the sensitivity of flux estimates to alternative ocean CO2 prior flux distributions and to the specification of uncertainties associated with ocean fluxes. We present a new scheme to characterize uncertainty in ocean prior fluxes, derived from a set of eight surface pCO2-based ocean flux products, and which reflects uncertainties associated with measurement density and pCO2-interpolation methods. This scheme provides improved model performance in comparison to fixed prior uncertainty schemes, based on metrics of model–observation differences at the network of surface sites. Long-term average posterior flux estimates for the 2000–2017 period from our GEOS-Chem–LETKF analyses are −0.255 ± 0.037 PgC yr−1 for the subtropical basin (15–50∘ N) and −0.203 ± 0.037 PgC yr−1 for the subpolar region (50–80∘ N, eastern boundary at 20∘ E). Our basin-scale estimates of interannual variability (IAV) are 0.036 ± 0.006 and 0.034 ± 0.009 PgC yr−1 for subtropical and subpolar regions, respectively. We find statistically significant trends in carbon uptake for the subtropical and subpolar North Atlantic of −0.064 ± 0.007 and −0.063 ± 0.008 PgC yr−1 decade−1; these trends are of comparable magnitude to estimates from surface ocean pCO2-based flux products, but they are larger, by a factor of 3–4, than trends estimated from global ocean biogeochemistry models.


2021 ◽  
Vol 127 ◽  
pp. 107785
Author(s):  
Christoph Wohner ◽  
Thomas Ohnemus ◽  
Steffen Zacharias ◽  
Hannes Mollenhauer ◽  
Erle C. Ellis ◽  
...  
Keyword(s):  

Author(s):  
Nadège Popoff ◽  
Elie Gaget ◽  
Arnaud Béchet ◽  
Laura Dami ◽  
Pierre Defos du Rau ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
pp. 135-142
Author(s):  
Abdulaziz Alossta ◽  
◽  
Omar Elmansouri ◽  
Ibrahim Badi ◽  
◽  
...  

The optimal Site selection operation is one of the most important challenges facing planners. Many location-allocation models have been developed based on multi-criteria decision making process. Recent methods take into account site, network, and user characteristics to determine the appropriate location. The development of optimum system has been a growing focus for most authorities across the world. It is generally thought that utlities allocation is the ultimate goal for service providers, which has been attributed to giving assistance in a time- and cost-efficient manner. In this paper, a multi-criteria decision making approach was implemented in two steps. Analytical hierarchy process (AHP) was adopted in the first step to determine the criteria weights. Results of AHP showed that response time had the highest weight among other criteria. Ranking of different alternatives was conducted in the second step using RAFSI model to choose the optimal location. Model ranking clearly indicated road-network as the best alternative to locate EMS centers.


Author(s):  
Fernanda Bravo ◽  
Marcus Braun ◽  
Vivek Farias ◽  
Retsef Levi ◽  
Christine Lynch ◽  
...  

AbstractIn the last several decades, the U.S. Health care industry has undergone a massive consolidation process that has resulted in the formation of large delivery networks. However, the integration of these networks into a unified operational system faces several challenges. Strategic problems, such as ensuring access, allocating resources and capacity efficiently, and defining case-mix in a multi-site network, require the correct modeling of network costs, network trade-offs, and operational constraints. Unfortunately, traditional practices related to cost accounting, specifically the allocation of overhead and labor cost to activities as a way to account for the consumption of resources, are not suitable for addressing these challenges; they confound resource allocation and network building capacity decisions. We develop a general methodological optimization-driven framework based on linear programming that allows us to better understand network costs and provide strategic solutions to the aforementioned problems. We work in collaboration with a network of hospitals to demonstrate our framework applicability and important insights derived from it.


2021 ◽  
Vol 9 ◽  
Author(s):  
R. T. Kingsford ◽  
G. Bino ◽  
C. M. Finlayson ◽  
D. Falster ◽  
J.A. Fitzsimons ◽  
...  

The Ramsar Convention (or the Convention on Wetlands), signed in 1971, was one of the first international conservation agreements, promoting global wise use of wetlands. It has three primary objectives: national designation and management of wetlands of international importance; general wise use of wetlands; and international cooperation. We examined lessons learnt for improving wetland conservation after Ramsar’s nearly five decades of operation. The number of wetlands in the Ramsar Site Network has grown over time (2,391 Ramsar Sites, 2.5 million km2, as at 2020-06-09) but unevenly around the world, with decreasing rate of growth in recent decades. Ramsar Sites are concentrated in countries with a high Gross Domestic Product and human pressure (e.g., western Europe) but, in contrast, Ramsar Sites with the largest wetland extent are in central-west Africa and South America. We identified three key challenges for improving effectiveness of the Ramsar Site Network: increasing number of sites and wetland area, improved representation (functional, geographical and biological); and effective management and reporting. Increasing the number of sites and area in the Ramsar network could benefit from targets, implemented at national scales. Knowledge of representativeness is inadequate, requiring analyses of functional ecotypes, geographical and biological representativeness. Finally, most countries have inadequate management planning and reporting on the ecological character of their Ramsar Sites, requiring more focused attention on a vision and objectives, with regular reporting of key indicators to guide management. There are increasing opportunities to rigorously track ecological character, utilizing new tools and available indicators (e.g., remote sensing). It is critical that the world protect its wetlands, with an effective Ramsar Convention or the Convention on Wetlands at the core.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2160
Author(s):  
Jean-Marie Lepioufle ◽  
Leif Marsteen ◽  
Mona Johnsrud

Instead of a flag valid/non-valid usually proposed in the quality control (QC) processes of air quality (AQ), we proposed a method that predicts the p-value of each observation as a value between 0 and 1. We based our error predictions on three approaches: the one proposed by the Working Group on Guidance for the Demonstration of Equivalence (European Commission (2010)), the one proposed by Wager (Journal of MachineLearningResearch, 15, 1625–1651 (2014)) and the one proposed by Lu (Journal of MachineLearningResearch, 22, 1–41 (2021)). Total Error framework enables to differentiate the different errors: input, output, structural modeling and remnant. We thus theoretically described a one-site AQ prediction based on a multi-site network using Random Forest for regression in a Total Error framework. We demonstrated the methodology with a dataset of hourly nitrogen dioxide measured by a network of monitoring stations located in Oslo, Norway and implemented the error predictions for the three approaches. The results indicate that a simple one-site AQ prediction based on a multi-site network using Random Forest for regression provides moderate metrics for fixed stations. According to the diagnostic based on predictive qq-plot and among the three approaches used in this study, the approach proposed by Lu provides better error predictions. Furthermore, ensuring a high precision of the error prediction requires efforts on getting accurate input, output and prediction model and limiting our lack of knowledge about the “true” AQ phenomena. We put effort in quantifying each type of error involved in the error prediction to assess the error prediction model and further improving it in terms of performance and precision.


2021 ◽  
Author(s):  
Thomas Ohnemus ◽  
Hannes Mollenhauer ◽  
Michael Mirtl ◽  
Steffen Zacharias

<p>The integrated European Long-Term Ecosystem, critical zone and socio-ecological Research Infrastructure (eLTER RI) was accepted onto the ESFRI roadmap in 2018. While several existing thematic environmental RIs in Europe focus on impacts of climate change and/or other elements of environmental change, eLTER RI will be the only research infrastructure embracing holistically the integrated impacts of such stressors on a wide variety of European benchmark ecosystems (major geo-eco-sociological systems across the continent’s ecoclimatological zones and Earth’s critical zone). In the beginning of 2020 eLTER RI entered the preparatory phase aiming at the development of the legal, financial and technical maturity required for an ESFRI Research Infrastructure.</p><p>The core of the eLTER RI will be ca. 200 selected sites covering all biogeographical zones in Europe, where biological, biogeochemical, hydrological and socio-ecological data will be collected - according to common standards - and analyzed. The European landscape of LTER sites and national networks has mainly been developed in a bottom-up manner. The sites have mostly been established for different monitoring and research purposes and are heterogeneous in terms of investigated ecosystem types, scales of investigation, complexity and instrumentation. Consequently, the transformation of the selected elements of the eLTER RI into a harmonized, high-performance, complementary and interoperable infrastructure is one of the key challenges of eLTER. Achieving the best possible representativity is on the major building blocks in eLTER’s design strategy.</p><p>To evaluate the representativity of eLTER a novel statistical approach combining information on biogeographical, ecological and socio-economic gradients with the management-relevant distribution of established sites was developed aiming at  i) identification of areas in Europe that are geographically underrepresented by the existing eLTER RI site network, ii) definition of priority regions for the geographical extension of the eLTER site network and, iii) development of suggestions for conceptual and infrastructural upgrades for existing less developed eLTER sites.</p><p>Reference datasets depicting biogeographical, ecological and socio-economical gradients were used to describe underrepresentation with a summation parameter called Aggregated Representedness. This statistical criterion was then used to classify five types of “priority regions” from very low to very high priority for geographical and/or conceptual extension. In a second step this information on priority regions was refined using additional information describing the geographical distribution based on Euclidean distances between established eLTER sites.  The combination of these two analyses allowed to identify less developed eLTER sites most suitable for conceptual and infrastructural upgrades. Thus, the presented analysis provides important information for the development of the design strategy for eLTER RI on the continental scale.</p><p>Concluding, a novel approach combining information on biogeographical, ecological and socio-economic gradients with the management-relevant information on the geographical distribution of established sites was developed. This tool allows to evaluate the strategies for further extension of established site networks. </p>


2021 ◽  
Vol 4 ◽  
Author(s):  
Denis Caudron ◽  
Lucie Galland ◽  
Melanie Taquet ◽  
Valentin Vasselon

A wild river is a living river, which is at baseline, well-preserved, and which runs freely and is home to a rich biodiversity in its high quality waters and on its banks. In Europe there are very few rivers which could be considered “wild”, which function at a high ecological level, since wild rivers, in the true sense of the term, no longer exist. Based on the fact that these rivers remain threatened, and that the existing tools (technical, regulatory, and financial) are insufficient and not adapted to ensure their preservation over the long term, the Wild Rivers project was founded in 2007, through a meeting of environmental defenders, scientists, fishermen, managers of land and river natural resources, and elected officials, all of whom were anxious to save the last of the French rivers which were still preserved, with a human impact that would be compatible with the conservation of the ecosystem. In 2014 the “Wild Rivers Site” label was created in France, as a conservation tool for rivers, both voluntary and non-regulatory, which allows the support necessary to enable the territorial players to preserve their rivers in harmony with the activity in the surrounding valleys. It also identifies and highlights these unique watercourses. The Valserine in the Ain region was the first river to obtain the Wild Rivers Site label. Today 28 rivers in France are labelled “Wild Rivers Sites” and the 22 management structures of these rivers are members of the Wild Rivers Site Network. To obtain the label, a river must fulfill two sets of criteria 1. The criteria grid: The watercourse must obtain a mark over 70/100. The grid is composed of 47 criteria evaluating the quality of the area, of which 12 are eliminatory, 8 are unrated, and 9 are under a bonus/penalty scheme 2. The program of actions taken by local players: The local managers must put in place a system of governance built around actions to be taken over a period of years, shared among them, and ambitious, going beyond the regulatory objectives of the European Directive Framework. It allows for the restoration of penalty points and the establishment of innovative conservation activities. The Wild Rivers Sites are also an open air laboratory for the development and use of innovative methods in order to provide new information on aquatic environments, and to improve their management and conservation. Numerous steps have already been taken within the network, such as the Ecosystem Services Study (Costa and Hernandez 2019); on the study of the genetic makeup of the brown trout population. Recently, the use of genetic study using environmental DNA to complete biodiversity inventories has also been deployed to study benthic diatoms (DNA of Diatoms Project 2020-2022). This project seeks to use DNA metabarcoding to respond to a number of objectives: i) inventory of the species of diatoms and their community structure in these watercourses which are generally seldom studied; ii) complete ecological status studies; iii) develop new genetic metrics and taxonomies adapted to the conservation of wild river watercourses. It is in this spirit that the Wild Rivers program was developed, and has received numerous positive responses on the behalf of watercourse management in France. Thanks to this impetus, work has been conducted to extend this conservation label to water sources in other countries (Switzerland, Ireland, Spain), with the future plan of building a European network dedicated to the conservation of Wild Rivers.


Sign in / Sign up

Export Citation Format

Share Document