normal inhibition
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 1)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 102 (10) ◽  
Author(s):  
Saira Hussain ◽  
Rodney S. Daniels ◽  
Stephen A. Wharton ◽  
Steven Howell ◽  
Chandrika Halai ◽  
...  

Neuraminidase (NA) inhibitors (NAI), oseltamivir and zanamivir, are the main antiviral medications for influenza and monitoring of susceptibility to these antivirals is routinely done by determining 50 % inhibitory concentrations (IC50) with MUNANA substrate. During 2010–2019, levels of A(H3N2) viruses presenting reduced NAI inhibition (RI) were low (~0.75 %) but varied year-on-year. The highest proportions of viruses showing RI were observed during the 2013–2014, 2016–2017 and 2017–2018 Northern Hemisphere seasons. The majority of RI viruses were found to contain positively charged NA amino acid substitutions of N329K, K/S329R, S331R or S334R, being notably higher during the 2016–2017 season. Sialidase activity kinetics were determined for viruses of RI phenotype and contemporary wild-type (WT) viruses showing close genetic relatedness and displaying normal inhibition (NI). RI phenotypes resulted from reduced sialidase activity compared to relevant WT viruses. Those containing S329R or N329K or S331R showed markedly higher Km for the substrate and Ki values for NAIs, while those with S334R showed smaller effects. Substitutions at N329 and S331 disrupt a glycosylation sequon (NDS), confirmed to be utilised by mass spectrometry. However, gain of positive charge at all three positions was the major factor influencing the kinetic effects, not loss of glycosylation. Because of the altered enzyme characteristics NAs carrying these substitutions cannot be assessed reliably for susceptibility to NAIs using standard MUNANA-based assays due to reductions in the affinity of the enzyme for its substrate and the concentration of the substrate usually used.



2018 ◽  
Vol 19 (6) ◽  
pp. 635.e1-635.e15 ◽  
Author(s):  
Daniel E. Harper ◽  
Eric Ichesco ◽  
Andrew Schrepf ◽  
Johnson P. Hampson ◽  
Daniel J. Clauw ◽  
...  


2017 ◽  
Vol 28 (13) ◽  
pp. 1754-1767 ◽  
Author(s):  
Rafiquel Sarker ◽  
Boyoung Cha ◽  
Olga Kovbasnjuk ◽  
Robert Cole ◽  
Sandra Gabelli ◽  
...  

Casein kinase 2 (CK2) binds to the NHE3 C-terminus and constitutively phosphorylates a downstream site (S719) that accounts for 40% of basal NHE3 activity. The role of CK2 in regulation of NHE3 activity in polarized Caco-2/bbe cells was further examined by mutation of NHE3-S719 to A (not phosphorylated) or D (phosphomimetic). NHE3-S719A but not -S719D had multiple changes in NHE3 activity: 1) reduced basal NHE3 activity—specifically, inhibition of the PI3K/AKT-dependent component; 2) reduced acute stimulation of NHE3 activity by LPA/LPA5R stimulation; and 3) reduced acute inhibition of NHE3 activity—specifically, elevated Ca2+ related (carbachol/Ca2+ ionophore), but there was normal inhibition by forskolin and hyperosmolarity. The S719A mutant had reduced NHE3 complex size, reduced expression in lipid rafts, increased BB mobile fraction, and reduced binding to multiple proteins that bind throughout the NHE3 intracellular C-terminus, including calcineurin homologous protein, the NHERF family and SNX27 (related PDZ domains). These studies show that phosphorylation of the NHE3 at a single amino acid in the distal part of the C-terminus affects multiple aspects of NHE3 complex formation and changes the NHE3 lipid raft distribution, which cause changes in specific aspects of basal as well as acutely stimulated and inhibited Na+/H+ exchange activity.



2016 ◽  
Author(s):  
Matthew T. Colonnese ◽  
Jing Shen

ABSTRACTSynchronous spontaneous activity is critical for circuit development. A key open question is to what degree is this synchronization models adult activity or is specifically tuned for circuit development. To address this we used multi-electrode array recordings of spontaneous activity in non-anesthetized neonatal mice to quantify firing rates, synchronization, binary spike-vectors and population-coupling of single-units throughout the period of map formation. Consistent with the first hypothesis, adult-like network interactions are established during the period of retinal waves, before the onset of vision and normal inhibition, and are largely conserved throughout juvenile ages. Significant differences from mature properties were limited to initial topographic map formation, when synchronization was lower than expected by chance, suggesting active decoupling in early networks. These findings suggest that developmental activity models adult synchronization, and that there is remarkable homeostasis of network properties throughout development, despite massive changes in the drive and circuit basis of cortical activity.



2016 ◽  
Vol 21 (24) ◽  
Author(s):  
Emi Takashita ◽  
Seiichiro Fujisaki ◽  
Masayuki Shirakura ◽  
Kazuya Nakamura ◽  
Noriko Kishida ◽  
...  

An influenza A(H1N1)pdm09 virus carrying a G147R substitution in combination with an H275Y substitution in the neuraminidase protein, which confers cross-resistance to oseltamivir and peramivir, was detected from an immunocompromised inpatient in Japan, March 2016. This dual H275Y/G147R mutant virus exhibited enhanced cross-resistance to both drugs compared with the single H275Y mutant virus and reduced susceptibility to zanamivir, although it showed normal inhibition by laninamivir.



Author(s):  
Thomas P. Bleck

Seizures result from imbalances between excitation and inhibition, and between neuronal synchrony and dyssynchrony. Current models implicate the cerebral cortex in the genesis of seizures, although thalamic mechanisms (particularly the thalamic reticular formation) are involved in the synchronization of cortical neurons. Often, the precipitants of a seizure in the critical care setting are pharmacological. Several mechanisms linked to critical illness can lead to seizures. Failure to remove glutamate and potassium from the extracellular space, functions performed predominantly by astrocytes, occurs in trauma, hypoxia, ischaemia, and hypoglycaemia. Loss of normal inhibition occurs during withdrawal from alcohol and other hypnosedative agents, or in the presence of GABA. Conditions such as cerebral trauma, haemorrhages, abscesses, and neoplasms all produce physical distortions of the adjacent neurons, astrocytes, and the extracellular space. Deposition of iron in the cortex from the breakdown of haemoglobin appears particularly epileptogenic. Although acute metabolic disturbances can commonly produce seizures in critically-ill patients, an underlying and potentially treatable structural lesion must always be considered and excluded.



2015 ◽  
Vol 59 (4) ◽  
pp. 2374-2379 ◽  
Author(s):  
Daisuke Tamura ◽  
Margaret Okomo-Adhiambo ◽  
Vasiliy P. Mishin ◽  
Zhu Guo ◽  
Xiyan Xu ◽  
...  

ABSTRACTNational U.S. influenza antiviral surveillance incorporates data generated by neuraminidase (NA) inhibition (NI) testing of isolates supplemented with NA sequence analysis and pyrosequencing analysis of clinical specimens. A lack of established correlates for clinically relevant resistance to NA inhibitors (NAIs) hinders interpretation of NI assay data. Nonetheless, A(H3N2) viruses are commonly monitored for moderately or highly reduced inhibition in the NI assay and/or for the presence of NA markers E119V, R292K, and N294S. In 2012 to 2013, three drug-resistant A(H3N2) viruses were detected by NI assay among isolates (n= 1,424); all showed highly reduced inhibition by oseltamivir and had E119V. In addition, one R292K variant was detected among clinical samples (n= 1,024) by a 3-target pyrosequencing assay. Overall, the frequency of NAI resistance was low (0.16% [4 of 2,448]). To screen for additional NA markers previously identified in viruses from NAI-treated patients, the pyrosequencing assay was modified to include Q136K, I222V, and deletions encompassing residues 245 to 248 (del245-248) and residues 247 to 250 (del247-250). The 7-target pyrosequencing assay detected NA variants carrying E119V, Q136, and del245-248 in an isolate from an oseltamivir-treated patient. Next, this assay was applied to clinical specimens collected from hospitalized patients and submitted for NI testing but failed cell culture propagation. Of the 27 clinical specimens tested, 4 (15%) contained NA changes: R292K (n= 2), E119V (n= 1), and del247-250 (n= 1). Recombinant NAs with del247-250 or del245-248 conferred highly reduced inhibition by oseltamivir, reduced inhibition by zanamivir, and normal inhibition by peramivir and laninamivir. Our results demonstrated the benefits of the 7-target pyrosequencing assay in conducting A(H3N2) antiviral surveillance and testing for clinical care.



2006 ◽  
Vol 290 (5) ◽  
pp. H1756-H1762 ◽  
Author(s):  
Albert S. Jung ◽  
Hajime Kubo ◽  
Rachel Wilson ◽  
Steven R. Houser ◽  
Kenneth B. Margulies

l-Arginine, the sole substrate for the nitric oxide (NO) synthase (NOS) enzyme in producing NO, is also a substrate for arginase. We examined normal feline hearts and hearts with compensated left ventricular (LV) hypertrophy (LVH) produced by ascending aorta banding. Using Western blot analysis, we examined the abundance of arginase isozymes in crude homogenates and isolated cardiac myocytes obtained from the LVs of normal and LVH hearts. We examined the functional significance of myocyte arginase via measurement of shortening and intracellular calcium in isolated myocytes in the presence and absence of boronoethyl chloride (BEC), a specific pharmacological inhibitor of arginase. Both arginase I and II were detected in crude myocardial homogenates, but only arginase I was present in isolated cardiac myocytes. Arginase I was downregulated in LVH compared with normal. Inhibition of arginase with BEC reduced fractional shortening, maximal rate of shortening (+d L/d t) and relengthening (−d L/d t), and the peak of the free cytosolic calcium transient in normal myocytes but did not affect these parameters in LVH myocytes. These negative inotropic actions of arginase inhibition were associated with increases in cGMP generation. These studies indicate that only arginase I is present in cardiac myocytes where it tends to limit NO and cGMP production with the effect of supporting basal contractility. In experimental LVH induced by pressure overload, our studies demonstrate reduced arginase I expression and reduced functional significance, allowing greater arginine substrate availability for NO/cGMP signaling.



2006 ◽  
Vol 18 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Ulrich Mayr ◽  
Jörn Diedrichsen ◽  
Richard Ivry ◽  
Steven W. Keele

Patients with focal lesions in the left (n = 7) and right (n = 4) prefrontal cortex were compared with controls (n = 16) in a task-switching experiment using four different, simple spatial tasks. Each of these tasks involved a left-right decision, either regarding an arrow, the word “left” or “right”, a circle position, or the direction of a moving line. We compared performance on trials that required rule switches versus rule repetitions (local switch costs) and we compared performance between blocks with bivalent stimuli (two dimensions present) and blocks with univalent stimuli (only one dimension present) to assess global switch costs. Patients with left prefrontal lesions, but not patients with right prefrontal lesions, exhibited increased costs on trials in which the relevant dimension switched (local switch costs), but also on no-switch trials with bivalent stimuli (global costs). We also assessed task-set inhibition in the form of the backward-inhibition effect [increased response times to recently abandoned tasks; Mayr, U., & Keele, S. Changing internal constraints on action: The role of backward inhibition. Journal of Experimental Psychology: General, 129, 4-26, 2000]. Although left frontal patients showed normal inhibition, right frontal patients showed no evidence for inhibition. These results suggest a neurocognitive dissociation between task-set selection and inhibition.



2005 ◽  
Vol 73 (6) ◽  
pp. 3278-3286 ◽  
Author(s):  
Barbara A. Butcher ◽  
Robert I. Greene ◽  
Stanley C. Henry ◽  
Kimberly L. Annecharico ◽  
J. Brice Weinberg ◽  
...  

ABSTRACT The cytokine gamma interferon (IFN-γ) is critical for resistance to Toxoplasma gondii. IFN-γ strongly activates macrophages and nonphagocytic host cells to limit intracellular growth of T. gondii; however, the cellular factors that are required for this effect are largely unknown. We have shown previously that IGTP and LRG-47, members of the IFN-γ-regulated family of p47 GTPases, are required for resistance to acute T. gondii infections in vivo. In contrast, IRG-47, another member of this family, is not required. In the present work, we addressed whether these GTPases are required for IFN-γ-induced suppression of T. gondii growth in macrophages in vitro. Bone marrow macrophages that lacked IGTP or LRG-47 displayed greatly attenuated IFN-γ-induced inhibition of T. gondii growth, while macrophages that lacked IRG-47 displayed normal inhibition. Thus, the ability of the p47 GTPases to limit acute infection in vivo correlated with their ability to suppress intracellular growth in macrophages in vitro. Using confocal microscopy and sucrose density fractionation, we demonstrated that IGTP largely colocalizes with endoplasmic reticulum markers, while LRG-47 was mainly restricted to the Golgi. Although both IGTP and LRG-47 localized to vacuoles containing latex beads, neither protein localized to vacuoles containing live T. gondii. These results suggest that IGTP and LRG-47 are able to regulate host resistance to acute T. gondii infections through their ability to inhibit parasite growth within the macrophage.



Sign in / Sign up

Export Citation Format

Share Document