scholarly journals SiMYB19 from Foxtail Millet (Setaria italica) Confers Transgenic Rice Tolerance to High Salt Stress in the Field

2022 ◽  
Vol 23 (2) ◽  
pp. 756
Author(s):  
Chengjie Xu ◽  
Mingzhao Luo ◽  
Xianjun Sun ◽  
Jiji Yan ◽  
Huawei Shi ◽  
...  

Salt stress is a major threat to crop quality and yield. Most experiments on salt stress-related genes have been conducted at the laboratory or greenhouse scale. Consequently, there is a lack of research demonstrating the merit of exploring these genes in field crops. Here, we found that the R2R3-MYB transcription factor SiMYB19 from foxtail millet is expressed mainly in the roots and is induced by various abiotic stressors such as salt, drought, low nitrogen, and abscisic acid. SiMYB19 is tentatively localized to the nucleus and activates transcription. It enhances salt tolerance in transgenic rice at the germination and seedling stages. SiMYB19 overexpression increased shoot height, grain yield, and salt tolerance in field- and salt pond-grown transgenic rice. SiMYB19 overexpression promotes abscisic acid (ABA) accumulation in transgenic rice and upregulates the ABA synthesis gene OsNCED3 and the ABA signal transduction pathway-related genes OsPK1 and OsABF2. Thus, SiMYB19 improves salt tolerance in transgenic rice by regulating ABA synthesis and signal transduction. Using rice heterologous expression analysis, the present study introduced a novel candidate gene for improving salt tolerance and increasing yield in crops grown in saline-alkali soil.

2021 ◽  
Author(s):  
Aminu Kurawa Ibrahim ◽  
Yi Xu ◽  
Qingyao He ◽  
Sylvain Niyitanga ◽  
Muhammad Zohaib Afzal ◽  
...  

Abstract Background: The jute plant is of great significance and economic relevance to humanity, but its production has been hindered due to abiotic influences, especially salt stress. Hitherto, the molecular bases for this vital feature await future exploration. The abscisic acid (ABA) signaling pathway comprises many regulated genes and plays a role in plant response to stress, however, a balance between the multiple pathways is always needed for any plant developmental process. In this study, we used a transcriptomic approach to unveil the molecular bases behind this trait. Salt tolerant (J194) and sensitive (J7) germplasms were subjected to sodium chloride (NaCl) stress at a different time point, from which leaf and roots samples were taken for transcriptome analyses. Result: The plant hormone signal transduction pathway was the most abundant observed in the study; the Pyrrolysine (PYL) gene (Cc.03G0016680) was up-regulated, which supports the basic model of abscisic acid (ABA). The quantitative reverse transcription-PCR (qRT –PCR) and the correlation analysis validated the Ribonucleic acid sequence (RNA-seq) results. The candidate genes’ relative expression level was higher in J194, especially in protein phosphate 2C (PP2C). Corchorus capsularis PP2C gene family revealed 38 members, phylogenetic analysis categorized PP2C into 15 based upon conserved domains. Eleven conserved motifs were identified, and most of the genes had the same number of conserved motifs. The exon-intron ranges of (3-21) and (2-20), respectively. Moreover, among the plant hormone signal transduction pathway PP2C genes, Cc.03G0016550 and Cc.07G0028160 were up-regulated in J194 root tissues at 6-hour exposure NaCl, as such recommended to be salt-tolerant candidature genes. It was noted that most of the Corchorus capsularis PP2C genes were involved from segmental duplication, and analysis of the key stress marker salt-tolerant PP2C genes validated the salt tolerance individuals. Conclusion: These results provided valuable insight into salt tolerance transcriptome and indicated that PP2C had provided a stepping-stone to the molecular mechanism in Corchorus capsularis. Furthermore, differentially expressed genes, motifs, gene structure, and the chromosomal location of salt tolerance candidate genes might have experienced functional divergence. As such, their further study will enhance salt tolerance in Corchorus capsularis.


2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na+ transport from the roots to the leaves, increasing K+ absorption in the roots and reducing K+ secretion from the leaves to maintain a significantly greater K+/Na+ ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pibiao Shi ◽  
Minfeng Gu

Abstract Background Soil salinity is one of the major abiotic stress factors that affect crop growth and yield, which seriously restricts the sustainable development of agriculture. Quinoa is considered as one of the most promising crops in the future for its high nutrition value and strong adaptability to extreme weather and soil conditions. However, the molecular mechanisms underlying the adaptive response to salinity stress of quinoa remain poorly understood. To identify candidate genes related to salt tolerance, we performed reference-guided assembly and compared the gene expression in roots treated with 300 mM NaCl for 0, 0.5, 2, and 24 h of two contrasting quinoa genotypes differing in salt tolerance. Results The salt-tolerant (ST) genotype displayed higher seed germination rate and plant survival rate, and stronger seedling growth potential as well than the salt-sensitive (SS) genotype under salt stress. An average of 38,510,203 high-quality clean reads were generated. Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified to deeper understand the differential response. Transcriptome analysis indicated that salt-responsive genes in quinoa were mainly related to biosynthesis of secondary metabolites, alpha-Linolenic acid metabolism, plant hormone signal transduction, and metabolic pathways. Moreover, several pathways were significantly enriched amongst the differentially expressed genes (DEGs) in ST genotypes, such as phenylpropanoid biosynthesis, plant-pathogen interaction, isoquinoline alkaloid biosynthesis, and tyrosine metabolism. One hundred seventeen DEGs were common to various stages of both genotypes, identified as core salt-responsive genes, including some transcription factor members, like MYB, WRKY and NAC, and some plant hormone signal transduction related genes, like PYL, PP2C and TIFY10A, which play an important role in the adaptation to salt conditions of this species. The expression patterns of 21 DEGs were detected by quantitative real-time PCR (qRT-PCR) and confirmed the reliability of the RNA-Seq results. Conclusions We identified candidate genes involved in salt tolerance in quinoa, as well as some DEGs exclusively expressed in ST genotype. The DEGs common to both genotypes under salt stress may be the key genes for quinoa to adapt to salinity environment. These candidate genes regulate salt tolerance primarily by participating in reactive oxygen species (ROS) scavenging system, protein kinases biosynthesis, plant hormone signal transduction and other important biological processes. These findings provide theoretical basis for further understanding the regulation mechanism underlying salt tolerance network of quinoa, as well establish foundation for improving its tolerance to salinity in future breeding programs.


2005 ◽  
Vol 45 (4) ◽  
pp. 391 ◽  
Author(s):  
B. Zhang ◽  
B. C. Jacobs ◽  
M. O'Donnell ◽  
J. Guo

Salt tolerances of 3 cultivars, Menemen puccinellia (Puccinellia ciliata Bor), Tyrrell and Dundas [tall wheatgrass, Thinopyrum ponticum (Podp.) Z. W. Liu and R. R. C. Wang], were compared with respect to their seed germination, adaptive responses to salt and waterlogging, seedling emergence, plant growth, shoot osmolality and mineral contents in a series of salt-stress experiments. An inverse normal distribution provided good fits for the time to seed germination. Under NaCl stress, 50% of the control (distilled water) seed germination rates of Menemen, Tyrrell and Dundas were achieved in 178.8, 300.9 and 296.8 mmol/L NaCl, respectively. Fifty percent of the control seedling emergence rates of these 3 cultivars were in 92.7, 107.2 and 113.5 mmol/L NaCl, respectively. The seed germination rates of these 3 cultivars under both salt and waterlogging stress were far lower than those germinated only under salt stress at the same salt level. Seed pretreatment by soaking seed in NaCl solutions greatly increased the seed germination rate under salt stress for Menemen and under both salt stress and waterlogging for Dundas. Tyrrell and Dundas were very similar in their tolerance to salt stress, and were significantly (P<0.05) more salt tolerant than Menemen in terms of seed germination and seedling emergence rate. Both shoot height and dry matter of these 3 cultivars were not statistically different among all salt stress levels during the seedling elongation period, indicating that the established plants of these 3 cultivars were very salt tolerant. The salt tolerance mechanisms of these 3 cultivars are possibly related to their abilities to maintain high osmolality in shoots by regulating high sodium and potassium contents, and reducing calcium deficiency under salt stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuexin Zhang ◽  
Yapeng Fan ◽  
Cun Rui ◽  
Hong Zhang ◽  
Nan Xu ◽  
...  

As one of the cash crops, cotton is facing the threat of abiotic stress during its growth and development. It has been reported that melatonin is involved in plant defense against salt stress, but whether melatonin can improve cotton salt tolerance and its molecular mechanism remain unclear. We investigated the role of melatonin in cotton salt tolerance by silencing melatonin synthesis gene and exogenous melatonin application in upland cotton. In this study, applicating of melatonin can improve salt tolerance of cotton seedlings. The content of endogenous melatonin was different in cotton varieties with different salt tolerance. The inhibition of melatonin biosynthesis related genes and endogenous melatonin content in cotton resulted in the decrease of antioxidant enzyme activity, Ca2+ content and salt tolerance of cotton. To explore the protective mechanism of exogenous melatonin against salt stress by RNA-seq analysis. Melatonin played an important role in the resistance of cotton to salt stress, improved the salt tolerance of cotton by regulating antioxidant enzymes, transcription factors, plant hormones, signal molecules and Ca2+ signal transduction. This study proposed a regulatory network for melatonin to regulate cotton’s response to salt stress, which provided a theoretical basis for improving cotton’s salt tolerance.


2018 ◽  
Vol 115 (42) ◽  
pp. E9971-E9980 ◽  
Author(s):  
Po-Kai Hsu ◽  
Yohei Takahashi ◽  
Shintaro Munemasa ◽  
Ebe Merilo ◽  
Kristiina Laanemets ◽  
...  

Stomatal pore apertures are narrowing globally due to the continuing rise in atmospheric [CO2]. CO2 elevation and the plant hormone abscisic acid (ABA) both induce rapid stomatal closure. However, the underlying signal transduction mechanisms for CO2/ABA interaction remain unclear. Two models have been considered: (i) CO2 elevation enhances ABA concentrations and/or early ABA signaling in guard cells to induce stomatal closure and (ii) CO2 signaling merges with ABA at OST1/SnRK2.6 protein kinase activation. Here we use genetics, ABA-reporter imaging, stomatal conductance, patch clamp, and biochemical analyses to investigate these models. The strong ABA biosynthesis mutants nced3/nced5 and aba2-1 remain responsive to CO2 elevation. Rapid CO2-triggered stomatal closure in PYR/RCAR ABA receptor quadruple and hextuple mutants is not disrupted but delayed. Time-resolved ABA concentration monitoring in guard cells using a FRET-based ABA-reporter, ABAleon2.15, and ABA reporter gene assays suggest that CO2 elevation does not trigger [ABA] increases in guard cells, in contrast to control ABA exposures. Moreover, CO2 activates guard cell S-type anion channels in nced3/nced5 and ABA receptor hextuple mutants. Unexpectedly, in-gel protein kinase assays show that unlike ABA, elevated CO2 does not activate OST1/SnRK2 kinases in guard cells. The present study points to a model in which rapid CO2 signal transduction leading to stomatal closure occurs via an ABA-independent pathway downstream of OST1/SnRK2.6. Basal ABA signaling and OST1/SnRK2 activity are required to facilitate the stomatal response to elevated CO2. These findings provide insights into the interaction between CO2/ABA signal transduction in light of the continuing rise in atmospheric [CO2].


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Xiaoyan Quan ◽  
Xiaoli Liang ◽  
Hongmei Li ◽  
Chunjuan Xie ◽  
Wenxing He ◽  
...  

Salinity is one of the limiting factors of wheat production worldwide. A total of 334 internationally derived wheat genotypes were employed to identify new germplasm resources for salt tolerance breeding. Salt stress caused 39, 49, 58, 55, 21 and 39% reductions in shoot dry weight (SDW), root dry weight (RDW), shoot fresh weight (SFW), root fresh weight (RFW), shoot height (SH) and root length (RL) of wheat, respectively, compared with the control condition at the seedling stage. The wheat genotypes showed a wide genetic and tissue diversity for the determined characteristics in response to salt stress. Finally, 12 wheat genotypes were identified as salt-tolerant through a combination of one-factor (more emphasis on the biomass yield) and multifactor analysis. In general, greater accumulation of osmotic substances, efficient use of soluble sugars, lower Na+/K+ and a higher-efficiency antioxidative system contribute to better growth in the tolerant genotypes under salt stress. In other words, the tolerant genotypes are capable of maintaining stable osmotic potential and ion and redox homeostasis and providing more energy and materials for root growth. The identified genotypes with higher salt tolerance could be useful for developing new salt-tolerant wheat cultivars as well as in further studies to underline the genetic mechanisms of salt tolerance in wheat.


2021 ◽  
Vol 23 (1) ◽  
pp. 138
Author(s):  
Longjie Ni ◽  
Zhiquan Wang ◽  
Xiangdong Liu ◽  
Shuting Wu ◽  
Jianfeng Hua ◽  
...  

Hibiscus hamabo Sieb. et Zucc is an important semi-mangrove plant with great morphological features and strong salt resistance. In this study, by combining single molecule real time and next-generation sequencing technologies, we explored the transcriptomic changes in the roots of salt stressed H. hamabo. A total of 94,562 unigenes were obtained by clustering the same isoforms using the PacBio RSII platform, and 2269 differentially expressed genes were obtained under salt stress using the Illumina platform. There were 519 differentially expressed genes co-expressed at each treatment time point under salt stress, and these genes were found to be enriched in ion signal transduction and plant hormone signal transduction. We used Arabidopsis thaliana (L.) Heynh. transformation to confirm the function of the HhWRKY79 gene and discovered that overexpression enhanced salt tolerance. The full-length transcripts generated in this study provide a full characterization of the transcriptome of H. hamabo and may be useful in mining new salt stress-related genes specific to this species, while facilitating the understanding of the salt tolerance mechanisms.


Sign in / Sign up

Export Citation Format

Share Document