scholarly journals Niche Differentiation of Arsenic-Transforming Microbial Groups in the Rice Rhizosphere Compartments as Impacted by Water Management and Soil-Arsenic Concentrations

2021 ◽  
Vol 12 ◽  
Author(s):  
Anil C. Somenahally ◽  
Richard H. Loeppert ◽  
Jizhong Zhou ◽  
Terry J. Gentry

Arsenic (As) bioavailability in the rice rhizosphere is influenced by many microbial interactions, particularly by metal-transforming functional groups at the root-soil interface. This study was conducted to examine As-transforming microbes and As-speciation in the rice rhizosphere compartments, in response to two different water management practices (continuous and intermittently flooded), established on fields with high to low soil-As concentration. Microbial functional gene composition in the rhizosphere and root-plaque compartments were characterized using the GeoChip 4.0 microarray. Arsenic speciation and concentrations were analyzed in the rhizosphere soil, root-plaque, pore water, and grain samples. Results confirmed several As-biotransformation processes in the rice rhizosphere compartments, and distinct assemblage of As-reducing and methylating bacteria was observed between the root-plaque and rhizosphere. Results confirmed higher potential for microbial As-reduction and As-methylation in continuously flooded, long term As-contaminated fields, which accumulated highest concentrations of AsIII and methyl-As concentrations in pore water and rice grains. Water management treatment significantly altered As-speciation in the rhizosphere, and intermittent flooding reduced methyl-As and AsIII concentrations in the pore water, root-plaque and rice grain. Ordination and taxonomic analysis of detected gene-probes indicated that root-plaque and rhizosphere assembled significantly different microbial functional groups demonstrating niche separation. Taxonomic non-redundancy was evident, suggesting that As-reduction, -oxidation and -methylation processes were performed by different microbial functional groups. It was also evident that As transformation was coupled to different biogeochemical cycling processes (nutrient assimilation, carbon metabolism etc.) in the compartments and between treatments, revealing functional non-redundancy of rice-rhizosphere microbiome in response to local biogeochemical conditions and As contamination. This study provided novel insights on As-biotransformation processes and their implications on As-chemistry at the root-soil interface and their responses to water management, which could be applied for mitigating As-bioavailability and accumulation in rice grains.

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 281
Author(s):  
Arghya Chattopadhyay ◽  
Anand Prakash Singh ◽  
Deepak Kasote ◽  
Indrajit Sen ◽  
Ahmed Regina

The present study was aimed at exploring the effect of soil application of different concentrations of orthophosphate (P) (0, 10, 20, 30, and 40 mg kg−1) on rice agronomic and yield parameters, arsenic (As) species accumulation, and polyphenol levels in the grain of rice grown under As spiked soil (10 mg kg−1). The contents of As species (As(V), As (III), MMA and DMA) and polyphenols in rice grain samples were estimated using LC-ICP-MS and LC-MS/MS, respectively. P treatments significantly reduced the toxic effects of As on agronomic parameters such as root weight and length, shoot and spike length, straw, and grain yield. Among the treatments studied, only the treatment of 30 mg kg−1 P helps to decrease the elevated levels of As (V), As (III), and DMA in rice grains due to As application. The study revealed that 30 mg kg−1 was the optimal P application amount to minimize AS accumulation in rice grains and As-linked toxicity on agronomic parameters and chlorophyll biosynthesis. Furthermore, the levels of trans-ferulic acid, chlorogenic acid, caffeic acid, and apigenin-7-glucoside increased in response to accumulation of As in the rice grain. In conclusion, the precise use of phosphorus may help to mitigate arsenic linked phytotoxicity and enhance the food safety aspect of rice grain.


2005 ◽  
Vol 75 (1) ◽  
pp. 65-80 ◽  
Author(s):  
A. K. Patra ◽  
L. Abbadie ◽  
A. Clays-Josserand ◽  
V. Degrange ◽  
S. J. Grayston ◽  
...  

2020 ◽  
Vol 66 (No. 3) ◽  
pp. 135-142
Author(s):  
Phuong Dinh Thi Lan ◽  
Nga Nguyen Thi Hang ◽  
Hoa Nguyen Thanh

Zinc (Zn) insufficiency and water deficiency are primary challenges in intensive rice production systems. This study aims to examine the influence of two irrigation regimes, flood irrigation (FI) and water-saving irrigation (WSI), on rice grain yield and mobile Zn accumulation in soil and rice grains. Experiments were conducted in An Vien rice fields in the Tien Lu district, Hung Yen province, located in the middle of the Red River delta during four rice seasons from 2015 to 2016. The results showed that the WSI regime dramatically increased the grain yield and Zn concentrations in grain of rice. Grain yield was increased by 14.76% and grain Zn concentration by 17.93% when compared with the FI regime. The decrease in the mobile Zn concentration in soil was only 5.7% in the WSI technique, compared with 73.6% for FI techniques. Therefore, it can be concluded that WSI can be effective agricultural practice to elevate grain yield and increase Zn retention in soil and bioavailability in rice grains.


2018 ◽  
Vol 15 (2) ◽  
Author(s):  
Nicole Colón Carrión ◽  
Chad Lozada Troche

Crops and stored grains are susceptible to pathogens that represent a threat to our health. The study presented herein compares the normal surface and endophytic fungal communities present on white and brown rice grains. One hundred grains of each rice variety was analyzed to determine their fungal contaminants and endophytes. Fungi were inoculated on SDA media, and purified in PDA media; morphological characterization was performed followed by amplification of the ITS region using PCR for all fungal isolates. Statistical analysis indicated significant differences between medium brown rice compared to white rice for surface and endophytic communities (p-value £ 0.05). In addition, a higher fungal diversity was found on brown rice grains compared to white rice. This variation may be due to differences in the processing methods used for each rice grain type. BLAST analysis revealed the presence of toxigenic strains of Aspergillus flavus, A.oryzae, Penicillium verrucosum, and P. viridicatum. The study of fungal growth in rice grains can contribute to the minimization of mycotoxin production by its prevention and control; therefore, decreasing crop contamination and human exposure to their metabolites. KEYWORDS: Fungi; Rice; Fungal contaminants; Fungal endophytes


2020 ◽  
Vol 12 (2) ◽  
pp. 552 ◽  
Author(s):  
Weronika Kruszelnicka ◽  
Andrzej Marczuk ◽  
Robert Kasner ◽  
Patrycja Bałdowska-Witos ◽  
Katarzyna Piotrowska ◽  
...  

Strength properties of grains have a significant impact on the energy demand of grinding mills. This paper presents the results of tests of strength and energy needed the for destruction of rice grains. The research aim was to experimentally determine mechanical and processing properties of the rice grains. The research problem was formulated in the form of questions: (1) what force and energy are needed to induce a rupture of rice grain of the Oryza sativa L. of long-grain variety? (2) what is the relationship between grain size and strength parameters and the energy of grinding rice grain of the species Oryza sativa L. long-grain variety? In order to find the answer to the problems posed, a static compression test of rice grains was done. The results indicate that the average forces needed to crush rice grain are 174.99 kg m·s−2, and the average energy is 28.03 mJ. There was no statistically significant relationship between the grain volume calculated based on the volumetric mass density Vρ and the crushing energy, nor between the volume Vρ and other strength properties of rice grains. In the case of Vs, a low negative correlation between strength σmin and a low positive correlation between the power inducing the first crack were found for the grain size related volume. A low negative correlation between the grain thickness a3, stresses σmin and work WFmax was found as well as a low positive correlation between thickness a3 and the force inducing the first crack Fmin.


2019 ◽  
Vol 690 ◽  
pp. 40-49 ◽  
Author(s):  
Wenmei He ◽  
Youjin Kim ◽  
Daegeun Ko ◽  
Seongtaek Yun ◽  
Seongchun Jun ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2829
Author(s):  
Yonghong Wang ◽  
Xueying Liu ◽  
Mingyi Zhang ◽  
Suchun Yang ◽  
Songkui Sang

Prestressed high-strength concrete (PHC) pipe pile with the static press-in method has been widely used in recent years. The generation and dissipation of excess pore water pressure at the pile–soil interface during pile jacking have an important influence on the pile’s mechanical characteristics and bearing capacity. In addition, this can cause uncontrolled concrete damage. Monitoring the change in excess pore water pressure at the pile–soil interface during pile jacking is a plan that many researchers hope to implement. In this paper, field tests of two full-footjacked piles were carried out in a viscous soil foundation, the laws of generation and dissipation of excess pore water pressure at the pile–soil interface during pile jacking were monitored in real time, and the laws of variation in excess pore water pressure at the pile–soil interface with the burial depth and time were analyzed. As can be seen from the test results, the excess pore water pressure at the pile–soil interface increased to the peak and then began to decline, but the excess pore water pressure after the decline was still relatively large. Test pile S1 decreased from 201.4 to 86.3 kPa, while test pile S2 decreased from 374.1 to 114.3 kPa after pile jacking. The excess pore water pressure at the pile–soil interface rose first at the initial stage of consolidation and dissipated only after the hydraulic gradient between the pile–soil interface and the soil surrounding the pile disappeared. The dissipation degree of excess pore water pressure reached about 75–85%. The excess pore water pressure at the pile–soil interface increased with the increase in buried depth and finally tended to stabilize.


2014 ◽  
Vol 2014 ◽  
pp. 1-2
Author(s):  
Liming Sun ◽  
Manman Zheng ◽  
Hongyan Liu ◽  
Shaobing Peng ◽  
Jianliang Huang ◽  
...  

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Hengdong Zhang ◽  
Jiana Chen ◽  
Shuanglü Shan ◽  
Fangbo Cao ◽  
Guanghui Chen ◽  
...  

Abstract Background Amylose accumulation in rice grains is controlled by genetic and environmental factors. Amylose content is a determinant factor of rice quality in terms of cooking and eating. Great variations in amylose content in indica rice cultivars have been observed. The current study was to identify differentially expressed proteins in starch and sucrose metabolism and glycolysis/gluconeogenesis pathways and their relationships to amylose synthesis using two rice cultivars possess contrasting phenotypes in grain amylose content. Results Synthesis and accumulation of amylose in rice grains significantly affected the variations between rice cultivars in amylose contents. The high amylose content cultivar has three down-regulated differentially expressed proteins, i.e., LOC_Os01g62420.1, LOC_Os02g36600.1, and LOC_Os08g37380.2 in the glycolysis/gluconeogenesis pathway, which limit the glycolytic process and decrease the glucose-1-phosphate consumption. In the starch and sucrose metabolic pathway, an up-regulated protein, i.e., LOC_Os06g04200.1 and two down-regulated proteins, i.e., LOC_Os05g32710.1 and LOC_Os04g43360.1 were identified (Figure 4). Glucose-1-phosphate is one of the first substrates in starch synthesis and glycolysis that are catalyzed to form adenosine diphosphate glucose (ADPG), then the ADPG is catalyzed by granule-bound starch synthase I (GBSS I) to elongate amylose. Conclusions The results indicate that decreasing the consumption of glucose-1-phosphate in the glycolytic process is essential for the formation of ADPG and UDPG, which are substrates for amylose synthesis. In theory, amylose content in rice can be regulated by controlling the fate of glucose-1-phosphate.


Sign in / Sign up

Export Citation Format

Share Document